Question Paper

Exam Date & Time: 30-May-2023 (02:30 PM - 05:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

SIXTH SEMESTER B.TECH END SEMESTER EXAMINATIONS, MAY 2023

MACHINE LEARNING [ICT 4032]

Marks: 50 Duration: 180 mins

Answer all the questions.

Instructions to Candidates: Answer ALL questions Missing data may be suitably assumed

Consider a linear regression problem in which we want to weight different training examples differently. Specifically, suppose we want to minimize

(5)

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} w^{(i)} \left(\theta^{T} x^{(i)} - y^{(i)} \right)^{2}.$$

i) The given cost function in vectorial notation can be written as

$$J(\theta) = (X\theta - \vec{y})^T W (X\theta - \vec{y}).$$

Solve argmin $J(\theta)$ and write the results in closed form as a function of X, W and \vec{y} .

ii) Suppose we have a training set $\{(x^{(i)}, y^{(i)}); i = 1, ..., m\}$ of m independent examples, but $y^{(i)}$'s were observed with differing variances. Suppose that

$$p(y^{(i)}|x^{(i)};\theta) = \frac{1}{\sqrt{2\pi}\sigma^{(i)}} \exp\left(-\frac{\left(y^{(i)} - \theta^T x^{(i)}\right)^2}{2(\sigma^{(i)})^2}\right).$$

Show that finding the maximum likelihood estimate of θ reduces to solving a weighted linear regression problem. Clearly state what the $w^{(i)}$'s are in terms of the $\sigma^{(i)}$. [Hint: Solve $\underset{\theta}{\operatorname{argmax}} \log \prod_{i=1}^m p(y^{(i)}|x^{(i)};\theta)$ as much as possible.]

B) (3)

Assume that the target variable and the inputs are related via $y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}$, where $\epsilon^{(i)}$ is an error term that captures either unmodeled effects or random noise. Further, assume that $\epsilon^{(i)} \sim \mathcal{N}(0, \sigma^2)$, and the density of $\epsilon^{(i)}$ is given by

$$p(\epsilon^{(i)}) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(\epsilon^{(i)})^2}{2\sigma^2}}.$$

Using these probabilitic assumption on the data show that the least-square regression corresponds to finding the maximum likelihood estimate of θ .

A generalized linear model assume that the response variable y is distributed according to a member of the exponential family:

$$p(y; \eta) = b(y) \exp(\eta^T T(y) - a(\eta)).$$

Show that the Bernoulli distribution, $p(y, \phi) = \phi^y (1 - \phi)^{1-y}$ is an example of exponential distribution.

In a factor analysis model, assume a joint distribution on (x, z) as follows

(5)

(2)

$$z \sim \mathcal{N}(0, I)$$

 $x|z \sim \mathcal{N}(\mu + \Lambda z, \Psi)$

where $\mu \in \mathbb{R}^n$, $\Lambda \in \mathbb{R}^{n \times k}$, and the diagonal matrix $\Psi \in \mathbb{R}^{n \times n}$, (k < n). Equivalently factor analysis model can also be defined according to

$$z \sim \mathcal{N}(0, I)$$

$$\epsilon \sim \mathcal{N}(0, \Psi)$$

$$x = \mu + \Lambda z + \epsilon$$

Also we have

$$\begin{bmatrix} z \\ x \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \vec{0} \\ \mu \end{bmatrix}, \begin{bmatrix} I & \Lambda^T \\ \Lambda & \Lambda \Lambda^T + \Psi \end{bmatrix} \right).$$

Consider a training set $\{x^{(i)}; i = 1, ..., m\}$, the log-likelihood of the parameter is given by

$$l(\mu, \Lambda, \Psi) = \log \prod_{i=1}^m \frac{1}{(2\pi)^{n/2} |\Lambda \Lambda^T + \Psi|^{1/2}} exp\left(-\frac{1}{2} (x^{(i)} - \mu)^T (\Lambda \Lambda^T + \Psi)^{-1} (x^{(i)} - \mu) \right).$$

Apply EM algorithm to estimate Λ .

- B) Describe following methods for feature selection:
 - i) Forward search
 - ii) Backward search
 - iii) Filter method.
- Given γ and some $\delta > 0$, how large must m be before you can guarantee that with probability at least 1δ , training error will be within γ of generalization error? Assume $\delta = 2k \exp(-2\gamma^2 m)$.
- Given an unlabeled set of examples $\{x^{(1)}, \dots, x^{(m)}\}$ the one-class SVM algorithm tries to find a direction w that maximally separates the data from the origin. Precisely, it solves the (primal) optimization problem:

$$\min_{w} \frac{1}{2} w^{T} w$$

subject to $w^{T} x^{(i)} > 1, i = 1, \dots, m$

A new test example x is labeled 1 if $w^T x \ge 1$, and 0 otherwise. For the given primal optimization problem, write down the corresponding dual optimization problem. Simplify your answer as much as possible.

- B) Show that for Principal Component Analysis (PCA), maximizing variance corresponds to finding the eigen vectors of the covariance matrix.
- C) The Markov Decision Process (MDP) provides the formalism in which the reinforcement problems are posed. Define MDP.
- 4)

(3)

(2)

(3)

(2)

the joint distribution of (x, y) according to:

$$\begin{split} p(y) &= \phi^y (1 - \phi)^{(1-y)} \\ p(x|y = 0) &= \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (x - \mu_0)^T \Sigma^{-1} (x - \mu_0)\right) \\ p(x|y = 1) &= \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (x - \mu_1)^T \Sigma^{-1} (x - \mu_1)\right) \end{split}$$

Here, the parameters of the model are ϕ , Σ , μ_0 and μ_1 . We claim that the maximum likelihood estimates of the parameters μ_0 and Σ are given by

$$\begin{split} \mu_0 &= \frac{\sum_{i=1}^m \mathbb{I}\{y^{(i)} = 0\}x^{(i)}}{\sum_{i=1}^m \mathbb{I}\{y^{(i)} = 0\}} \\ \Sigma &= \frac{1}{m} \sum_{i=1}^m (x^{(i)} - \mu_{y^{(i)}}) (x^{(i)} - \mu_{y^{(i)}})^T. \end{split}$$

The log-likelihood of the data is given by

$$\begin{split} l(\phi, \mu_0, \mu_1, \Sigma) &= \log \prod_{i=1}^m p(x^{(i)}, y^{(i)}; \phi, \mu_0, \mu_1, \Sigma) \\ &= \log \prod_{i=1}^m p(x^{(i)}|y^{(i)}; \mu_0, \mu_1, \Sigma) p(y^{(i)}; \phi) \end{split}$$

By maximizing l with respect to the parameters μ_0 and Σ , show that the maximum likelihood estimates of μ_0 and Σ are indeed as given in the above formulas.

- Consider a coin-flipping experiment in which you are given a pair of coins A and B of unknown biases θ_A and θ_B respectively (i.e., on any given flip, coin A will land on heads with probability θ_A and on tail with probability $(1-\theta_A)$, similarly for coin B). Consider the dataset collected using following procedure five times: labels of the coins are removed, now randomly choose one of the two coin and perform ten independent coin tosses with the selected coin. Let $x^{(i)} = j$ denotes j number of heads obtained during i-th set of experiment. The dataset obtained from this experiment are $\{x^{(1)} = 5, x^{(2)} = 9, x^{(3)} = 8, x^{(4)} = 4, x^{(5)} = 7, \}$. With initial estimate of biases $\hat{\theta}_A^{(0)} = 0.6$ and $\hat{\theta}_B^{(0)} = 0.5$, apply EM algorithm to compute $(\hat{\theta}_A^{(1)}, \hat{\theta}_B^{(1)})$.
- C) Show that a valid kernel matrix, K must be positive semi-definite.
- Consider a classification problem in which the response variable y can take any one of k values, so $y \in \{1, 2, ..., k\}$. Assume that the response variable is discrete. Model this classification scenario as distributed according to a multinomial distribution, and derive the result for hypothesis function, $h_{\theta}(x)$ using GLM approach.

B) (3)

The log-likelihood of a Markov model is defined as

$$l(A) = \log P(\vec{z}; A)$$
$$= \log \prod_{t=1}^{T} A_{z_{t-1}z_t}$$

where \vec{z} is an observed sequence. Find the maximum likelihood estimate for the parameter, A.

C) What do you understand by the term *Gaussian Mixture Model (GMM)*? Give an example of GMM. (2)

-----End-----

(3)

(2)