Question Paper

Exam Date & Time: 27-May-2023 (02:30 PM - 05:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

SIXTH SEMESTER B.TECH (COMPUTER AND COMMUNICATION ENGINEERING) END SEMESTER EXAMINATIONS, MAY/JUNE 2023

WIRELESS COMMUNICATION AND COMPUTING [ICT 3272]

Marks: 50

A)

Duration: 180 mins.

Answer all the questions.

Instructions to Candidates: Missing data may be suitably assumed

- 1) A mobile user is moving from Cell Site A to Cell site B at the speed of 63 km/hr. The radius of the cell site is 2000 meters with a path loss (5) exponent of 3. Consider the time at which handoff occurs is 28 seconds.
 - i. Calculate the minimum required margin for handoff.

ii. Compute the distance at which handoff is initiated.

[Assume d0 = 1, P0 = 0dBm].

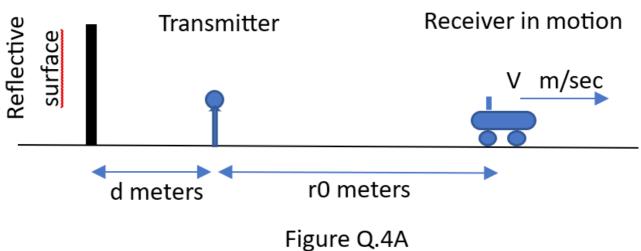
- iii. Recalculate (i) if the duration over which handoff occurs is 5 seconds.
- B) Suppose a person is moving from Udupi to Manipal in a bus and he/she is using a mobile station. Illustrate the attachment procedure of mobile (3) station to serving GPRS support node in a general packet radio system.
- C) Discuss the reasons for the mobile users shifting from Wireless Application Protocol (WAP) to i-Mode service in cellular network (2)
- 2) The mobile call establishment procedure in a GSM network is shown in Table 2A. Identify mistakes in the table and plot correct sequence of it (5) with a proper reason for each change.
 - A) Table: 2A

Steps	Μ	BT	BS	BS	MS
	S	S	С	S	C
1. Channel request		▶			
2. Channel assigned	t	- +			
3. Authentication request		▶	→—	-	
4. Authentication response	+	- +	- +		
5. Call establishment request		▶			
6. Send destination address		▶	→ —		
7. Routing response	+	- +		- +	
8. Ciphering command	+				_
9. Ciphering ready		▶	→ —		

10. Assign traffic channel	
11. Traffic channel established	← ←
12. Available/busy signal	←
13. Call accepted	← ← ← ←
14. Connection established	+++
15. Information exchange	← →

B) Elaborate the 6 factors that influence the penetration of cellular network is different in different countries.

C) Destination-Sequenced Distance Vector routing algorithm is developed even though the distance vector routing algorithm exists. Why? Justify. (2)


- Consider an access point/client emitting 900-MHz carrier frequency, it is affected only by thermal noise. The transmission power at access point (5) Tx is 416 mW, client-side Tx is 83 mW, and cable loss at both side is 3 dB. Antenna gains at the access point and client sides are 18 dBi and 13 dBi respectively. The free space path loss for the coverage range of 5 km, the receiving sensitivity at the access point is -82 dBm, and the receiving sensitivity at client side is -73 dBm. Estimate the Rx signal level at access point and the link margin of the network.
 - B) A half-wave dipole antenna which is also a directional antenna, with an effective area of (1.64* Lambda /4π is used in place of a parabolic (3) reflective antenna with a diameter of 2m. Evaluate the directional gain/loss resulting from the replacement if the Transmitter station is operating at 12 GHz. Note: Lambda is wavelength.
 - C) Discuss the CDMA access scheme. Demonstrate the signal encoding and decoding for data 10110 with 3 users assigned. The chip-codes are (2) 100101, 110011, and 110110 and assume chip codes are bipolar.
- 4) Develop a transmission channel model for the following scenarios.

A)

5)

Case 1: Discuss the effect of multipath and the spread that are to be accounted in the channel model depicted in Figure Q.4A

Case 2: Discuss the effect of additional path on the channel model if an additional reflector is placed d meters from the receiver in the direction of its movement.

Figure Q.4A

- B) Explain the concept of MFSK signaling. With neat frequency allocation diagram versus time, demonstrate the MFSK signaling for the bit stream (3) 101010111001 with the symbol duration $T_s = 3^*T_b$, where T_b represents one bit duration.
- C) Consider a base station is communicating with a receiver which is stationed at 6 km and operating at 2 GHz. For a 10 dBW transmitted power, (2) evaluate the received signal power if total system loss is 8 dB, 5 dB Noise figure and the receiver bandwidth is 1.5 MHz. Assume the system is operating at 27-degree Celsius and Transmitter and receiver antenna gains are 8 dB and 0 dB respectively.

Compare and contrast the fast and slow frequency hop spread spectrum techniques with the direct sequence spread spectrum methods. (5) A)

- B) Given the generator polynomial $G(X) = X^3 + X + 1$, draw the LFSR structure and prove that the sequence generated at the output of each shift register satisfies the maximum length pseudo-random properties. (3)
- C) Assuming a PN generator produces the bit stream 1101100010011110001011111, demonstrate the Fast FHSS method with 4-FSK data (2) encoding method. For illustration assume the following: Input data 11001101001001, PN pattern changes at every T_c duration and $T_c = T_b$.

(3)

(5)

-----End-----