MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent unit of MAHE, Manipal)

MANIPAL INSTITUTE OF TECHNOLOGY SIXTH SEMESTER B. TECH (CIVIL ENGINEERING) END SEMESTER EXAMINATION, MAY 2023 ADVANCES IN CONCRETE TECHNOLOGY (CIE 4051)

(-05-2023)

TIME: 3 HRS.

MAX. MARKS: 50

Note: 1. Answer all questions.

2. Any missing data may be suitably assumed.

Q.		MARKS	CO	BL	
1A	Discuss the inherent drawbacks of concrete			1	2
1B	Illustrate with a relevant graph water-cement ratio of concrete.	the relation between strength and the	3	1	2
1C	Discuss the following types of autogenous shrinkage. Describe	of shrinkage, i) plastic shrinkage and ii) the effects of the creep of concrete.	4	1	2
2A	List the factors that necessitate	the advances in concrete technology.	2	1	2
2B	Discuss the factors affecting i) compressive strength, ii) elastic modulus, iii) bond strength, and iv) impact strength of concrete.			2	2
2C	Illustrate, with a neat sketch, the phases of concrete microstructure. Discuss the influence of these phases on the properties of hardened concrete.			2	2
3 A	Illustrate the role of aggregate size on the compressive strength of concrete.			2	2
3B	Illustrate the provisions in IS 10262:2019 that ensure 95% of the results			3	3
	fall within the range of characteristic strength.				
30	The test data for designing the M/5 mix is below for severe exposure conditions and a 120 mm slump				
	Cement OPC 53				
	Fly ash	30% as a replacement for cement			
	Maximum nominal size of	20 mm	4	3	3
	Fine aggregate	Conforming to grading Zone-II	•	U	Ŭ
	Chemical admixture 1.1% PCE-based superplasticizer				
	Determine i) target mean streng				
	to-cementitious material ratio,				
	per unit volume of total aggrega				

4 A	List the possible benefits of using lightweight concrete in structural applications. Discuss possible recommendations to tackle possible issues related to workability, w/c ratio, flowability, and durability while designing lightweight aggregate concrete.	5	3	2
4B	Discuss the characteristics of high-strength concrete considering i) development of strength, ii) heat of hydration, and iii) shrinkage and creep.	3	4	2
4 C	Discuss the role of i) fillers and ii) aggregates in designing a self- consolidating concrete.	2	4	2
5A	Compare SIFCON and SIMCON on i)preparation and fiber content and ii) application.	2	4	2
5 B	Explain the physical process of concrete deterioration. Discuss the measures to control them.	5	5	2
5C	Illustrate with a neat sketch the setup of the Ultrasonic test and its interpretation.	3	5	2

Table 5 Minimum Cement Content, Maximum Water-Cement Ratio and Minimum Grade of Concrete for Different Exposures with Normal Weight Aggregates of 20 mm Nominal Maximum Size

il No.	Exposure	Plain Concrete			Reinforced Concrete		
		Minimum Cement Content kg/tn ³	Maximum Free Water- Cement Ratio	Minimum Grade of Concrete	Minimum Cement Content kg/m ³	Maximum Free Water- Coment Ratio	Minimum Grade of Concrete
)	(2)	(3)	(4)	(5)	(6)	(?)	(8)
)	Mild	220	0.60		300	0.55	M 20
ü)	Moderate	240	0.60	M 15	300	0.50	M 25
ii) .	Severe	250	0.50	M 20	32.0	0.45	M 30
0	Very severe	260	0.45	M 20	340	0.45	M 35
)	Extreme	280	0.40	M 25	360	0.40	M 40

(Clauses 6.1.2, 8.2.4.1 and 9.1.2)

.

Table 10 Volume of Coarse Aggregate per Unit Volume of Total Aggregate for Different Zones of Fine Aggregate for Water-Cement/Water-Cementitious Material Ratio of 0.30 (Clause 6.2.7)

Sl No.	Nominal Maximum Size of Aggregate	Volume of Coarse Aggregate per Unit Volume of Total Aggregate for Different Zones of Fine Aggregate				
		Zone III	Zone II	Zone I		
(1)	(2)	(3)	(4)	(5)		
i)	10.0	0.56	0.54	0.52		
ii)	12.5	0.58	0.56	0.54		
iii)	20.0	0.68	0.66	0.64		

Table 1 Value of X (Clause 4.2)			Table 2 Assumed Standard Deviation (Clause 4.2.1.3)			
Sl No.	Grade of Concrete	Value of X	Sl No.	Grade of Concrete	Assumed Standard Deviation N/mm ²	
(1)	(2)	(3)	(1)	(2)	(3)	
i)	M10 M15	5.0	i)	M10 M15	3.5	
ii)	M20 M25	5.5	ii)	М20 М25∫	4.0	
iii)	M30 M35 M40 M45 M50 M55	6.5	iii)	M30 M35 M40 M45 M50 M55 M60	5.0	
iv)	M60J M65 and above	8.0	iv)	M65 M70 M75 M80	6.0	

Table 2 Assumed Standard Deviation

Table 8 Recommended w/cm for High Strength Concrete made with HRWRA (Clause 6.2.5)

SI	Target Compressive Strength at 28 Days N/mm ²	Water-Cementitious Materials Ratio			
190.					
		10.0 mm	12.5 mm	20.0 mm	
(1)	(2)	(3)	(4)	(5)	
i)	70	0.36	0.35	0.33	
ii)	75	0.34	0.33	0.31	
iii)	80	0.32	0.31	0.29	
iv)	85	0.30	0.29	0.27	
v)	90	0.28	0.27	0.26	
vi)	100	0.26	0.25	0.24	

