Reg. No.			Y)	

VI SEMESTER B.TECH (CIVIL) END SEMESTER EXAMINATIONS MAY- 2023 (Make up Examination)

SUBJECT: DESIGN OF STEEL STRUCTURES [CIE 4064]

Date of Exam:

Time of Exam:

Max. Marks: 50

Instructions to Candidates:

- ❖ Answer ALL the questions & missing data may be suitably assumed
- ❖ IS 800 and SP-6 is Permitted to Use. Use Fe410 gade steel with fy=250N/mm²

Determine shear resistance (Vcr) corresponding to web buckling of a steel plate girder using post critical method. Assume stiffeners are	ful Con		3
provided at the support only. Mz = 4275 kN-m and Vz = 877.5 kN . Flange size $450 \text{ mm} \times 35 \text{ mm}$ and web $12 \text{ mm} \times 1200 \text{mm}$.	CO1	03	3
Determine buckling resistance of intermediate stiffener 10 mm x160mm size. Given factored shear=588 kN; V _{cr} =469.8kN; spacing of the stiffeners=2000 mm, web plate size 12 mmx 1200 mm.	CO1	05	3
Derive the expression for the economical depth of the welded plate girder. Assume moment is carried by the flanges only.	CO1	02	2
Determine the fatigue strength of gantry girder section. Use following data. Crane operates for 225 days /year. Working hours = 8 hrs /day. Max. no. of trips/ hr = 3. Design life = 50 years. Section modulus Zez=3764.98x10 ³ mm ³ , web size 7.6 mmx600 mm,	CO2	05	3
Mu=676.6kN-m and Vu=337.34 kN.			
Determine the overall buckling strength of ISWB225@332.56 N/m of I- section column subjected to factored axial tension Pu = 450 kN and Mz at top 35 kN-m and Mz at bottom 20 kN-m. '	CO3	05	3
Determine resistance to combined effect of a column ISHB 250@51kg/m. of effective height 5.0m. subjected to maximum factored axial force 500 kN and factored moment 45 kN-m at top and 25 kN-m at the bottom. Given fbd=201.6n/mm ² .	CO3	03	3
Determine the size of the base plate to carry service axial load of 600 kN and bending moment 30 kN-m resting on RCC footing with M ₄₀ grade concrete.	CO4	05	3
8 Draw a neat sketch of cross section of composite bridge			2

CO5	03	3
CO5	05	3
CO5	05	3
CO5	05	3
	05	
CO5	02	2
CO5	03	2
CO4	05	3
CO5	04	2
	CO5 CO5	CO5 02 CO5 03 CO4 05

CIE 4064 Page 2 of 2