

MANIPAL INSTITUTE OF TECHNOLOGY SIXTH SEMESTER B.TECH (CIVIL ENGINEERING) END SEMESTER EXAMINATION, MAY 2023

URBAN TRANSPORT PLANNING (CIE 4068)

(-05-2023)

TIME: 3 HRS.

MAX. MARKS: 50

Note: 1. Answer all questions.

2. Any missing data may be suitably assumed.

Q. 10		MARKS 5	СО	BL					
IA	The target year productions and relative attractiveness of a four-zone city have been estimated as follows:							3	5
	Zone		Productions	Attr	Attractiveness				
	1		1500	0					
	2		0	3	3				
	3		2600	2	2				
	4 0			5					
	The calibrati			-					
	and all socio								
	gravity mode								
	attractions fo								
	i∖j	1	2	3	4	all (Coord			
	1	5	10	15	20				
	2	10	5	10	15				
	3	15	10	5	10				
	4	20	15	10	5		a section.		
	Decide the final trip table for the target year.								
1B	With the help of a neat figure, explain the BPR diversion curve method for							5	
	network assi								
1C	· · · · · · · · · · · · · · · · · · ·							4	
	reasons.								
	i) Type of trip								
	ii) Zonal characteristics							-	
2A	A small study area represented by six traffic zones has the following							2	
	characteristics.								

	Zone	1	2	3	4	5	6				
	Trip	600	450	900	850	750	290				
	production										
	Cars	250	200	710	615	280	130				
	owned										
		Examine the mathematical relationship between trip production and car									
	ownership details.							GLESS RESERVE			
2B	Explain capacity restraint method for traffic assignment.							3	5	2	
2C	Define Drew's technique for network assignment.							2	5	1	
3A	Solve the traffic assignments of vehicle trips shown in the following O-D							5	5	3	
	trip table to the network using the all-or-nothing assignment technique. To										
	summarize your results, list all of the links in the network and their										
	corresponding traffic volume after loading.										
	Origin-Destination Tr			7						1	
	From/to 1	2	ps between 3	4	3	ghway Network		- material form		36%	
	1 - 100 100 200 150 2 400 - 200 100 500										
	3 20		- 300	100	150	min 12	min	7 min			
	4 250 150 300 - 400 5 200 100 50 350 -										
3B	The total nur	nber of	trips in	a TAZ	Z is four	nd to be	4200.	Currently all trips	3	4	5
	are made by	car. Th	he gov	ernmen	t plans	to brin	g in tw	vo alternatives; to			
	introduce a	train c	or a bu	as. The	e travel	l chara	cteristic	s and respective			
	coefficients are given in table below. Decide the best alternative in terms										
	of trips carrie	ed.									
		X_1	X_2		X_3	X_4	X_5				
	Coefficient	0.05	0.0	4 (0.07	0.2	0.2				
	Car	25	-			22	6				
	Bus	35	8	(6	8	-				
	Train	17	14		5	6	-				
	The degree of satisfaction of each mode choice is expressed as a function									4.5	
	and is given as: $a_1X_1+a_2X_2+a_3X_3+a_4X_4+a_5X_5$ where a_1 , a_2 etc. are										
	coefficients of the respective predictor variables.										
3C	Cross classification technique is a tool for computing trips generated in a							2	2	1	
	zone. What are the limitations of this technique?										
4A	Illustrate the Lowry Model of land use transport modelling with the help of							5	4	2	
	a flow chart.										
4B	Explain the internal form and function of an urban structure.							3	4	4	
4C	Regression analysis is a powerful tool to predict the trips generated from a							2	2	1	
	zone. List out the drawbacks of this method.									1	
5A	Compare multiple linear regression analysis and category analysis for							5	2	2	
	predicting trip generation.										
5B	Illustrate the general principles of traffic assignment with the help of a							3	5	2	
	figure.										
5C	Compare pre		. 11	*1 .*	1 1	1.			2	4	2