Exam Date & Time: 25-May-2023 (02:30 PM - 05:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

VI SEMESTER B.TECH END SEMESTER EXAMINATIONS, May-June 2023
DESIGN AND DRAWING OF CHEMICAL PROCESS EQUIPMENT [CHE 3251]

Marks: 50

Duration: 180 mins.
A

Answer all the questions.

Instructions to Candidates: Answer ALL questions Missing data may be suitably assumed

- 1) Estimate the thickness required for the component parts of the vessel (2.5 m ID and 3 m high). The vessel is to operate at a pressure of 14 bar (absolute) and temperature of 400°C. The material of construction will be plain carbon steel. Welds will be fully radiographed. A corrosion allowance of 3
 - mm should be used. The allowable design stress value = 100 N/mm^2 .

 HEAD: Ellipsoidal (2:1) and bolted cover with C=0.5 and D_e = 2.7 m.

 BOTTOM: Tori spherical (100-10) and Hemisphere.

 Compare and discuss the results.
 - B) A vacuum distillation column is to operate under a pressure of 150 mmHg. The column diameter is 1 m and the plate spacing 0.5 m. The material of construction is carbon steel and the maximum operating temperature 75 °C. If the vessel thickness is 15 mm, check if this is sufficient or not.
- A vessel is designed for an internal pressure 200 kg_f/cm². A spiral wound metal, fiber stainless steel gasket with inside diameter 40 cm and width 4 cm is used. Gasket factor is 4, while gasket seating
 - A) stress is 750 kg_f/cm². Permissible stress for bolt material at atmospheric and operating condition is 1400 kg_f/cm². Check whether the gasket width is sufficient to keep it away from crushing out? (5)
 - While doing thermal design of a 2-4 STHE you end up with the following results: Length of tubes = 10 m; No. of tubes = 500; Shell ID = 700 mm; $\Delta P_t = 55 \text{ kN/m}_2 & \Delta P_s = 5 \text{ kN/m}^2$; Available UOD = 600 W/m²K; Required UOD = 1800 W/m²K. Do you feel that this design is satisfactory? If not, what are the strategies will you incorporate to satisfy the design criteria?
- A 1-2 shell and tube heat exchanger is to be used for cooling amyl acetate from 70°C to 40°C at a rate of 30000 kg/h using raw water available at 20°C and leaving at 35°C. Find the value of heat transfer coefficient h₀ with the following data given. Correction factor F_T=0.88. The shell diameter given as

 (5)
 - A) 305 mm. Baffle spacing = 40% of shell ID. Properties of amyl acetate at 55 °C: ρ =880 kg/m³, c_p =2.1 kJ/kgK, μ =0.55 cP, k= 0.143 W/m K.
 - B)

 1-1 STHE is used to heat an organic liquid (50 m³/h) from 10°C to 28°C, which passes through the tubes (30 steel tubes; 5cm ID; 5mm thick) of the exchanger. The density, viscosity, heat capacity and the thermal conductivity of the organic liquid are the same as water (1 g/cc; 1cP; 4.2 kJ/kg K and 0.54 W/ m K respectively). The shell-side fluid is water that enters with flow rate 3x10⁴ kg/h and temperature 60°C.
 - Determine the tube side heat transfer coefficient.
 - If the overall heat transfer coefficient is 500 W/m²K, determine the length of the tubes.
- 4) It is proposed to use an existing distillation column, which is fitted with reflux condenser which has 300 vertical, 70 mm ID tubes, for separating benzene from a mixture of chlorobenzenes. The top product will be 3000 kg/h benzene and the column will operate with a reflux ratio of 5. Check whether

(5)

flooding occurs or not. The condenser pressure will be 1 bar. Densities at benzene boiling point are ρ_L : A) 850 kg/m³, ρ_v : 3 kg/m³.

Useful Formula:

$$\left[u_{v}^{1/2}
ho_{v}^{1/4}+u_{L}^{1/2}
ho_{L}^{1/4}
ight]<0.6\left[gd_{i}(
ho_{L}-
ho_{v})
ight]_{\Box}^{1/4}$$

- B) A water-cooled, 1-1 shell-and-tube freon condenser with in-tube condensation of R-22 @37°C (c_{pL} = 1.31 kJ/kg K; v_L = 8.4 x 10⁻⁴ m³/kg; v_g = 0.02 m³/kg; μ_L = 1.86x10⁻⁴ Pa.s; μ_g = 1.39x10⁻⁵ Pa.s; k_L = 0.082 W/m K; λ = 170 kJ/kg; Pr = 3) has to be designed. City water (Inlet and outlet temperatures are 18°C & 26°C respectively) is used as coolant. Determine the
 - Tube side heat transfer coefficient using Cavallini and Zecchin theory.

Length of the condenser if the overall heat transfer coefficient is 250 W/ m²K.

(5)

Design parameters:

Design cooling load: 150 kW; One tube pass; Pitch: 1" Square; Shell dia: 17"; Baffle Spacing: 35 cm; Number of Tubes: 200; Size of tubes: 0.75" OD & 0.68" ID; Vapor quality = 75%.

- A forward-feed evaporator (triple effect) is used to evaporate a solution. Saturated steam at 9 atm abs is being used. The feed rate enters at 16 °C.

 Assume $\Delta T_1 = 28 \text{ K}$, $\Delta T_2 = 23 \text{ K}$ and $\Delta T_3 = 42 \text{ K}$. (5)
 - A) Determine enthalpy of steam, vapor and liquid streams of each evaporator:
 - B) A forward-feed evaporator (triple effect) is being used to evaporate a solution containing 10 wt% solids to a concentrated solution of 50 wt%. The feed rate is 23000 kg/h. Using the following enthalpy values, calculate the steam and liquid flow rates of each evaporator.

Enthalpies of each stream		
Steam Enthalpies,	Vapor Enthalpies,	Liquid Enthalpies,
kJ/kg	kJ/kg	kJ/kg
		$@T_{F}, h_{F} = 112$
$@T_{sl}, \lambda_{s1} = 2200$	$@T_l, H_1 = 2684$	$@T_{l}, h_{L1} = 440$
$@T_{l}, \lambda_{s2} = 2243$	$@T_2, H_2 = 2655$	$@T_2, h_{L2} = 364$
$(a)T_2$, $\lambda_{s3} = 2290$	$@T_3$, $H_3 = 2601$	$@T_3, h_{L3} = 230$

Useful Energy Balance Equations:

- $F(h_F|-H_1) + S\lambda_{s1} = L_1(h_{L1}-H_1)$
- $L_1 (h_{L1} \lambda_{s2} H_2) + F \lambda_{s2} = L_2 (h_{L2} H_2)$
- $L_2(h_{L2}-\lambda_{s3}-H_3)+L_1\lambda_{s3}=L_3(h_{L3}-H_3)$

----End-----