Exam Date & Time: 03-Jul-2023 (02:30 PM - 05:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

B. Tech in Chemical Engineering
VI Semester External Examination (Make Up)
June/July 2023

PROCESS DYNAMICS AND CONTROL [CHE 3252]

Marks: 50 Duration: 180 mins.

Descriptive Questions

Answer all the questions.

Section Duration: 180 mins

List the objectives of Process Control in Chemical Industries.

(2)

A)

B) Solve and find y(t) for the following equation

$$\frac{dy}{dt} + 2y = 12e^{3t}$$
; given the initial condition $y(0) = 3$. (4)

C) Why do we need mathematical modelling for a process control? (4)

2) Write short note on process gain and time constant of a process.

(2)

A)

B) A thermometer showing steady state temperature of 37°C is suddenly immersed into a hot water bath at 120°C which follows first order dynamics ($\tau_P = 0.7$ sec & $K_P = 1$). Determine the following

a. Thermometer reading after 0.5 sec

(4)

b. Thermometer reading after 1.5 sec

C) Consider a second order system with the following transfer function

$$G(s) = \frac{10}{s^2 + 1.6s + 4} \tag{4}$$

Find

a) overshoot percentage

- b) rise time
- c) period of oscillation
- d) response time ($\pm 2\%$)
- 3) Define Proportional Band and Reset time.

(2)

- A)
- B) Discuss how the stability is affected for integral and derivative control?

(4)

- C) A closed loop control system has two first order systems in series with time constants of 1 and 2 min and gains of 3 and 5 respectively. Proportional control is used. For a servo problem determine, what value of K_c gives a damping coefficient of 0.707 for closed loop response? (4)
- 4) Brief about stability based on the roots of characteristic equation.

(2)

- A)
- B) Check for stability by using Routh Hurwitz method for the following equation.

$$s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 + 10s + 16 = 0$$
 (4)

C) What is meant by controller tuning in process control?

(4)

5) Mention the importance of gain margin and phase margin in frequency response analysis.

(2)

- A)
- B) Find the amplitude ratio and phase lag for different values of frequency to the transfer

$$G(s) = \frac{5}{(s+1)(2s+1)(3s+1)}$$
 (4)

C) Briefly discuss about the cascade control system with a neat example.

(4)

----End----