Reg. No.					

VI SEMESTER B.TECH. (COMPUTER SCIENCE & ENGINEERING) END SEMESTER EXAMINATIONS, MAY 2022

SUBJECT: DATA WAREHOUSE AND DATA MINING [CSE 4060]

REVISED CREDIT SYSTEM

(--/05/2022)

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer ALL FIVE questions.
- Missing data may be suitably assumed.

		M	СО	AHEP LO	BL
1A.	Present a detailed outline of any four aspects of Mining methodology.	4	1	1,3	2
1B.	Summarize any four architectural types of Data Warehouses.	4	1	1,3,5	2
1C.	With the help of sufficient examples examine any 4 descriptors inside the Dimensional table of a Star Schema model	2	2	2,3,5	2
2A.	With the help of an example present an elaborate summarization of the general principles and method of application of Type 2 changes to Data Warehouses	5	2	2,3,5	1
2B.	Justify how Immediate Data extraction is carried out in Data Warehouses	3	2	1,4,5	1
2C.	With the help of an example, compare Interval Scaled and Ratio scaled attribute types	2	2	2,4,6	1
3A.	For the given dataset, assuming minimum support is set to a value of 2, generate all frequent itemsets using the FP-Growth algorithm. Show the detailed steps by constructing the Conditional (Sub-)Pattern Bases and also show the conditional FP-tree associated with the conditional node I3 using pictorial representation.	5	3	2,3,5	6

Reg. No.					

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

প	VSPIRED BY LIFE A Const	tituent Institution of Manip	al University					r	,
	TID	Lis	t of item_IDs						
	T100	I1,	12, 15						
	T200	12,	I4						
	T300	12,	13						
	T400	I1,	12, 14						
	T500	I1,	13						
	T600	12,	13						
	T700	I1,	13						
	T800		12, 13, 15						
	T900	I1,	12, 13						
3B.	_	Apriori algo		over freque	nt itemsets for n	nining 3	3	2,3,5	6
3C.	correlation	exists betwee	ole shown in an buying game ble Summaria	e and buying	etermine what ty g video	pe of	3	1,3	1
	Transactio Video Pur		pect to Game			2			
		game	game	Σ_{row}					
	video	4000	3500	7500					
	video	2000	500	2500					
	Σ_{col}	6000	4000	10,000					
44	Canaidanth	- f-IIif:			f d f	-1		1.2	4
4A.	network. Le the network	t the learning care given in sing Backpropon.	rate be 0.9. T Table 1, Classi	he initial we fy the tuple,	feed-forward neuright and bias value $X = (1, 0, 1)$ with a ll steps in detail fo	es of class	4	1,3	4

Reg. No.					

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

A Constituent Institution of Manipal University

x1 x2 x3 w14 w15 w24 w25 w34 w35 w46 w56 θ4 θ5 θ6 1 0 1 0.2 -0.3 0.4 0.1 -0.5 0.2 -0.3 -0.2 -0.4 0.2 0.1 4B. With the help of examples give a detailed outline of the pruning techniques 3	245
AP With the help of examples give a detailed outline of the pruning techniques 2	245
AB With the help of examples give a detailed outline of the pruning techniques 2	245 4
AB With the help of examples give a detailed outline of the pruning techniques 2	245 4
46. With the help of examples give a detailed outline of the pruning techniques 3	2,4,5 1
involved in mining Closed and Maximal Itemsets	
4C. Present a summary of the commonly used approaches for pruning Decision 2 4	3,4,5 4
Trees	
5A. With the help of a diagram furnish an elaborate breakdown of the procedure 5	3,5,6 2
involved in Agglomerative and Divisive Hierarchical clustering of data 4	3,3,0
objects.	
FD. Using sufficient illustration present an intrinsta summary of the working of	4.5
5B. Using sufficient illustration present an intricate summary of the working of CHAMELEON algorithm for clustering of data.	4,5 2
CHANGELOW digorithm for clustering of data.	
5C. With the help of a diagram examine how Support Vector Machines classify 4	4,5 4
data when data are linearly separable	