MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

SIXTH SEMESTER BTECH. (E & C) DEGREE END SEMESTER EXAMINATION MAY/JUNE 2023

SUBJECT: WIRELESS COMMUNICATION (ECE 3252)

TIME: 3 HOURS

MAX. MARKS: 50

Instructions to candidates

- Answer ALL questions.
- Missing data may be suitably assumed.

Q. No.	Questions	M*	C *	A *	B *
1A.	From fundamentals, obtain an expression for coverage area, assuming a circular cell. Give its simplified form also.	5	2	C3	3
1B.	 A Wireless communication base station transmits 10 watts of power at a carrier frequency of 1GHz.If the receiver station is at a distance of 1.6km from the base station, then determine (i) The propagation path loss (in dB) in a free space environment (ii) The received signal power in dBm (iii) The transmission delay in ns. Assume that the transmitter and receiver antenna gains are 1.6 each. 	3	1	C2	4
1C.	For the ten-ray model, assume that the transmitter and receiver are at the same height in the middle of a street of width 20m. The transmitter-receiver separation is 500m. Find the delay spread for this model.	2	1	C2	4
2A.	Derive an expression for autocorrelation of in-phase and quadrature components and show that both are WSS random processes.	5	2	C3	3
2B.	Explain the power delay profile, Doppler power spectrum, and channel coherence time.	3	2	C3	3
2C.	Consider a channel with Rayleigh fading and average received power of 20dBm. Find the probability that the received power is below 10dBm	2	2	C3	4
3A.	Derive an expression for optimal power allocation and Shannon's capacity of a time variant wireless channel.	5	3	C2	3
3B.	For a Rayleigh fading wireless channel, derive an expression for average probability of error in BFSK modulation	3	4	C2	3
3C.	Obtain the expression for outage probability and hence fade margin in Rayleigh fading channel.	2	4	C2	3
4A.	Consider a time invariant frequency selective block fading channel that has four sub-channels of bandwidth B=10MHz. The frequency responses associated with each sub-channel are H ₁ =1, H ₂ =0.5, H ₃ =2 and H ₄ =0.25 respectively. The transmit power constraint is P= 10mW and noise PSD of N ₀ /2 withN ₀ =0.001 μ W/Hz. Find the Shannon's capacity of this channel and the optimal power allocation that achieves this capacity	5	3	C2	4

4B.	Consider BPSK modulation in a channel with both log-normal shadowing of 8dB and Rayleigh fading. The desired maximum average error probability is $\overline{P_{bo}} = 10^{-4}$. Determine the value of $\overline{Y_b}$ that will ensure $\overline{P_b} \le 10^{-4}$ with probability 1- $P_{out} = 0.95$	3	4	C2	4
4C.	With neat diagrams, explain the principle of decision feedback equalizer	2	1	C2	3
5A.	With relevant diagrams, explain the Alamouti scheme of transmitter diversity in the absence of CSI at transmitter and derive necessary equations.	5	5	C2	3
5B.	Derive an expression for maximum SNR achieving condition in Maximal Ratio Combining (MRC) technique	3	5	C2	3
5C.	Find the outage probability of BPSK modulation at $P_b \le 10^{-3}$ for a Rayleigh fading channel with Selection Combining (SC) diversity for M=1 (no diversity), M = 2 and M = 3. Assume equal branch SNR of 15 dB.	2	5	C2	4

M*--Marks, C*--CLO, A*--AHEP LO, B* Blooms Taxonomy Level