	Reg. No.									
50. I I I	L INSTITUT	TE O	OF	TE	CF	IN	OL	00	GY	
(A constituent unit o	f MAHE, Manipal)									

DEPARTMENT OF MECHATRONICS VI SEMESTER B.TECH. MECHATRONICS

END SEMESTER EXAMINATION, MAY 2023

SUBJECT: ENERGY AND HEAT TRANSFER [MTE 3252]

Time: 3 hours

Max. Marks: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Missing data may be suitably assumed and justified.

Q. No	PROBLEM STATEMENT		CO	РО	LO	BL
1A.	Two Carnot engines A and B are connected in series between two thermal	4	1	1,3	1,2	3
	reservoirs maintained at 1000 K and 100 K respectively. Engine A receives	-	-	-,-	-,-	•
	1680 kJ of heat from the high-temperature reservoir and rejects heat to the					
	Carnot engine B. Engine B takes in heat rejected by engine A and rejects heat					
	to the low-temperature reservoir. If engines A and B have equal thermal					
	efficiencies, Determine					
	(a) The heat rejected by engine B					
	(b) The temperature at which heat is rejected by engine, A					
1B.	Two ends of a copper rod ($k = 380 \text{ W/(m-K)}$), 15 mm diameter and 300 mm	3	3	1,3	1,2	3
	long are connected to two walls, each maintained at 300°C. Air is blown across					
	the rod with a heat transfer coefficient of 20 W/($m^{2}K$). Air temperature is 40°C.					
	Determine: (i) midpoint temperature of the rod (ii) net heat transfer to					
	atmosphere.					
1C.	The aluminium square fins (0.5 mm×0.5mm) of 10 mm length are provided on	3	3	1,3	1,2	3
	a surface of semiconductor electronic device to carry 1W of energy generated					
	by electronic device. The temperature at the surface of the device should not					
	exceed 80°C when surrounding temperature is 40°C. Taking the following data,					
	Calculate the number of fins required to carry out above duty. Neglect the heat					
	loss from the end of fins k (aluminium) = 200 W/m°C; h = 15 W/m ² °C.					
2A.	A 0.8 m high, 1.5 m wide double pane window consists of two 4 mm thick	4	2	1,3	1,2	3
	layers of glass ($k = 78$ W/mK) and is separated by a 10 mm wide stagnant air					
	space ($k = 0.026$ W/mK). The room is at 20°C and the outside air is at 10°C.					
	The heat transfer coefficients are $h_i = 10$ and $h_o = 40$ W/m ² K. Determine (i) The					
	rate of heat transfer through the window, (ii) the inside surface temperature					
2 B .	Water ($C_p = 4.187 \text{ kJ/kg K}$) is heated at the rate of 1.4 kg/s from 40°C to 70°C	3	3	1,3	1,2	3
	by an oil ($C_p = 1.9 \text{ kJ/kg K}$) entering at 110°C and leaving at 60°C in a counter					
	flow heat exchanger. If $U_o = 350 \text{ W/m}^2 \text{ K}$, determine the surface area required.					

•~	T 11 1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-		1.0	1.0	
2C.	In a parallel flow double-pipe heat exchanger water flows through the inner pipe	3	3	1,3	1,2	3
	and is heated from 20° C to 70° C. Oil flowing through the annulus is cooled					
	from 200° C to 100° C. It is desired to cool the oil to a lower exit temperature by					
	increasing the length of the heat exchanger. Determine the minimum					
	temperature to which the oil may be cooled.	-	-			
3A.	A 4 kg/s product stream from a distillation column is to be cooled by a 3 kg/s	4	3	1,3	1,2	3
	water stream in a counter-flow heat exchanger. The hot and cold stream inlet					
	temperatures are 400K and 300K respectively, and the area of the exchanger is					
	30 m ² . If the overall heat transfer coefficient is estimated to be 820 W/m ² K,					
	determine the product stream outlet temperature, if its specific heat is 2500 J/kg-					
	K and the coolant outlet temperature using NTU Method.				<u> </u>	
3B.	In a pipe of 300 mm diameter and 800 m length an oil of specific gravity 0.8 is	3	6	1,3	1,2	3
	flowing at the rate of 0.45 m^3 /s. Compute (i) Head lost due to friction, and (ii)					
	Power required to maintain the flow. Take kinematic viscosity of oil as 0.3					
	stoke.					
3C.	In a pipe of diameter 350 mm and length 75 m water is flowing at a velocity of	3	6	1,3	1,2	3
	2.8 m/s. Compute the head lost due to friction using Darcy-Weisbach formula.					
	Assume kinematic viscosity of water as 0.012 stoke.					
4A.	Derive an expression for the velocity distribution for viscous flow through a	5	5	1,3	1,2	4
	circular pipe. Also sketch the velocity distribution and shear stress distribution			-		
	across a section of the pipe.					
4B.	Prove that the total head loss when pipes are connected in series sum of head	3	6	1,3	1,2	5
	loss in individual pipes.					
4C.	Oil of absolute viscosity 1.5 poise and density 848.3 kg/m ³ flows through a 30	2	6	1,3	1,2	3
	cm I.D. pipe. If the head loss in 3000 m length of pipe is 20 m, assuming a					
	laminar flow, determine. (i) the velocity, (ii) Reynolds number.					
5A.	An oil of viscosity 9 poise and specific gravity 0.9 is flowing through a	5	5	1,3	1,2	3
	horizontal pipe of 60 mm diameter. If the pressure drop in 100 m length of the					
	pipe is 1800 kN/m ² , Determine:					
	(i) The rate of flow of oil.					
	(ii) The centerline velocity.					
	(iii) The total frictional drag over 100 m length.					
	(vi) The velocity gradient at the pipe wall.					
	(v) The velocity and shear stress at 8 mm from the wall.					
5B.	A main pipe divides into two parallel pipes which again forms one pipe as	3	6	1,3	1,2	3
	shown in Figure Q5B. The length and diameter for the first parallel pipe are					
	2000 m and 1.0 m respectively, while the length and diameter of 2nd parallel					
	pipe are 2000 m and 0.8 m. Determine the rate of flow in each parallel pipe, if					
	total flow in the main is 3.0 m^3 /s. The co-efficient of friction for each parallel					
	pipe is same and equal to 0.005.					

	$\begin{array}{c} & & & \\ & &$					
5C.	Compare between the hydraulic gradient line (H.G.L.) and energy gradient line	2	5	1	1	5
	(E.G.L.) for a flow of fluid in the pipe.					