# **Question Paper**

Exam Date & Time: 14-Jun-2023 (09:30 AM - 12:30 PM)



# MANIPAL ACADEMY OF HIGHER EDUCATION

# INTERNATIONAL CENTRE FOR APPLIED SCIENCES END SEMESTER THEORY EXAMINATION - MAY 2023 II SEMESTER B.Sc (Applied Sciences) in Engg.

## CHEMISTRY [ICH 121 - S2]

Duration: 180 mins.

#### Marks: 50

### Answer all the questions.

#### Missing data, if any, may be suitably assumed

|    |    | Explain the origin of potential at the electrodes of a galvanic cell.                                                        | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----|----|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A) | I  |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | II | The equilibrium constant for the reaction is 4.0.                                                                            | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    |    | $CH_3COOH + C_2H_5OH \longleftarrow CH_3COOC_2H_5 + H_2O$ What will be the                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    |    | composition of the equilibrium mixture, if 1 moles of acid is taken along with 8 moles of alcohol.                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| B) |    | What are vander Waals forces? Explain the Following                                                                          | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | I  |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    |    | iii) London forces                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | П  | Explain the following with a suitable example                                                                                | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    |    | a) Homolytic fission                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    |    | b) Heterolytic fission                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    |    | One mole of an ideal gas in 22.4 litres is expanded isothermally reversible                                                  | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| A) | I  | (a) w (b) q (c) $\Delta$ H (d) $\Delta$ G (e) $\Delta$ S                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | II | What is a first-order reaction? Derive an expression for rate constant of first order reaction.                              | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| B) |    | Discuss the following types of organic reactions with a suitable example.                                                    | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | Ι  | (a) Substitution reaction (b) Elimination reaction (c) Rearrangement                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | II | Describe the formation of $\sigma$ molecular orbitals resulting from the overlapping p-orbitals along the internuclear axis. | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    |    | Describe the construction and working of a calomel electrode.Mention any two advantages.                                     | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | B) | II<br>B) I<br>II<br>A) I<br>II<br>B) I                                                                                       | <ul> <li>A) 1</li> <li><sup>II</sup> The equilibrium constant for the reaction is 4.0.<br/>CH<sub>3</sub>COOH + C<sub>2</sub>H<sub>5</sub>OH ← CH<sub>3</sub>COOC<sub>2</sub>H<sub>5</sub> + H<sub>2</sub>O What will be the composition of the equilibrium mixture, if 1 moles of acid is taken along with 8 moles of alcohol.</li> <li><sup>B)</sup> What are vander Waals forces? Explain the Following <ol> <li><sup>I</sup> Dipole-dipole interactions</li> <li><sup>II</sup> Ion-dipole interactions</li> <li><sup>III</sup> London forces</li> </ol> </li> <li><sup>III</sup> Explain the following with a suitable example <ol> <li>A) Homolytic fission</li> <li>B) Heterolytic fission</li> <li>Cone mole of an ideal gas in 22.4 litres is expanded isothermally reversible at 300 K to a volume of 22.4 litres and 1/10 atm. Calculate <ol> <li>(a) w (b) q (c) ΔH (d) ΔG (e) ΔS</li> <li><sup>III</sup> What is a first-order reaction? Derive an expression for rate constant of first order reaction.</li> </ol> </li> <li>B) Discuss the following types of organic reactions with a suitable example. <ol> <li>(a) Substitution reaction (b) Elimination reaction (c) Rearrangement</li> <li><sup>III</sup> Describe the formation of σ molecular orbitals resulting from the overlapping p-orbitals along the internuclear axis. Describe the construction and working of a calomel electrode.Mention any</li> </ol> </li> </ol></li></ul> |

A) I Ш A first order reaction is 40% complete in 50 minutes. Calculate the value of (2) the rate constant. In what time will the reaction be 80% complete? B) (3) What is Born-Haber cycle? How can we obtain lattice energy of a NaCl I with its help? (2) Ш Discuss collision theory (Lindemann's theory) of reaction rates. (3)Derive Gibb's-Helmholtz equation. A) L Ш (2)Consider the following cell: Ni/Ni<sup>2+</sup>(0.01M)//Cu<sup>2+</sup>(0.5M)/Cu. The standard reduction potential of Ni and Cu are -0.25 and 0.34 V respectively. Write the electrode reactions and calculate the EMF of the cell at 298 K. B) What is sp hybridization? Discuss the shape of beryllium fluoride based on <sup>(3)</sup> L this hybridization. (2) Ш In k versus 1/T graph was plotted to calculate the activation energy of a reaction using arrhenius equation for the effect of temperature on reaction rate. The slope of the straight line was found to be -2.55 x 10<sup>4</sup>. Calculate the activation energy of the reaction. (3)What are the necessary conditions required for a molecule to exhibit optical isomerism? Explain the optical isomerism in tartaric acid. A) I 25 mL of 0.01 AgNO3 is mixed with 25 mL of 0.0005 M aqueous Ш (2) NaCl solution. Determine whether the precipitate of AgCl will be formed or ot? Given  $K_{sp}$  (AgCl) = 1.7 x 10<sup>10</sup> M<sup>2</sup>. B) (3) Describe the formation of  $\square$  orbitals by the lateral overlap of p- atomic I orbitals and also draw molecular orbital energy level diagram for oxygen molecule.

4)

5)

<sup>II</sup> The cell SCE// (0.1M) HCI/AgCI(s)/Ag gave emf of 0.24 V and 0.26 V with <sup>(2)</sup> buffer having pH value 2.8 and unknown pH value respectively. Calculate the pH value of unknown buffer solution. (Given E<sub>SCE</sub> = 0.2422 V)

-----End-----