Question Paper

Exam Date & Time: 02-May-2023 (09:30 AM - 12:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENCES END SEMESTER THEORY EXAMINATION - MAY 2023 II SEMESTER B.Sc (Applied Sciences) in Engg.

Mathematics - II [IMA 121]

Marks: 50

Duration: 180 mins.

Answer all the questions.

Missing data, if any, may be suitably assumed

- -

1)		Evaluate $\iint xydxdy$ where the region is bounded by x-axis, ordinate	(3)
	A)	x=2a and the curve $x^2 = 4ay$.	
	B)	Evaluate $\int_{0}^{\frac{a}{\sqrt{2}}} \int_{x=y}^{\sqrt{a^2-y^2}} \log_e(x^2+y^2) dx dy$ by changing to polar co-	(3)
		ordinate system.	
	C)	Evaluate $\iiint_{S} \sqrt{x^{2} + y^{2}} dx dy dz$ where S is the solid bounded by the	(4)
		surfaces $x^2 + y^2 = z^2$, $z = 0, z = 1$.	
2)		Find the equation of the smallest sphere which contains the circle	(3)
	A)	$x^{2} + y^{2} + z^{2} + 2x + 6y + 4z - 11 = 0, \ 2x + 2y + z + 1 = 0.$	
	B)	Find the equation of the right circular cone generated when the	(3)
		straight line $2y + 3z = 6$, $x = 0$ revolves about z-axis	
	C)	Show that $\int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{\sin\theta}} X \int_0^{\frac{\pi}{2}} \sqrt{\sin\theta} d\theta = \pi$ (4))
3)		Find the angle between the surfaces $xy^2z = 3x + z^2$ and $3x^2 - y^2 + z^2$	(3)
	A)	2z = 1 at the point (1, -2, 1)	
	B)		(3)
		Verify Green's theorem in the plane for $\oint_c^{\square} (xy + y^2) dx + x^2 dy$ where c	
		is the closed curve of the region bounded by $y = x$ and $y = x^2$.	
	C)	Find all the eigen values and any one corresponding eigen vector of	(4)