Question Paper

Exam Date & Time: 16-Jun-2023 (09:30 AM - 12:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENCES END SEMESTER THEORY EXAMINATION - MAY 2023 II SEMESTER B.Sc (Applied Sciences) in Engg.

Switching Circuits and Logic Design [ICS 122]

Marks: 50

Duration: 180 mins.

Answer all the questions.

Missing data, if any, may be suitably assumed

1)	Simplify the following expressions using algebraic manipulation.	(10)
	i) f= $x^2x^3x^4+x^1x^3x^4+x^1x^2x^4$ ii) f= $(x^1+x^2+x^3)$. $(x^1+x^2+x^4)$. $(x^1+x^3+x^4)$ Find the minimum cost SOP and POS	
	expression for the following function using K-map and design the circuit using only NOR gates.	
	i) F(w, x, y, z)= ∑m(0, 1, 3, 4, 7, 11, 13, 15)+D(9, 12, 14)	
2)	Design and write verilog code for the following.	(10)
	i) 4-bit Adder/Subtractor.ii) 3 to 8 Decoder with active high enable input and active low output.	
3)	Write down the implications of "delay issues" in 4-bit adder circuit and explain how it can be rectified by re-designing it as "carry look ahead adder". Illustrate the functionality of it using two 4-bit numbers A=1101 and B=1011.	(10)
4)	What is the significance of a priority encoder? Explain the functionality of a 4:2 priority encoder. Write Verilog code for 8:3 priority encoder using casex statement.	(10)
5)	With neat circuit diagram along with truth table and transistor states, illustrate how to realize NAND, NOR and AND gates using a NMOS transistor.	(10)