Question Paper

Exam Date & Time: 19-Jun-2023 (09:30 AM - 12:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENCES END SEMESTER THEORY EXAMINATION - MAY 2023 IV SEMESTER B.Sc (Applied Sciences) in Engg. SIGNALS AND SIGNAL PROCESSING [IEE 241]

Marks: 50

Duration: 180 mins.

Answer all the questions.

Missing data, if any, may be suitably assumed Use of formula/transform table is permitted.

¹⁾ Sk	etch and	label the ever	n and odd	components	of the following	CT signal.	(2)
------------------	----------	----------------	-----------	------------	------------------	------------	-----

A)
$$x(t) = t [u(t) - u(t - 5)].$$

^{B)} Consider the DT signal $x[n] = 2^n \{u[n+1] - u[n-4]\}$. Sketch x[n] and the ⁽⁴⁾ following transformations on x[n]:

(i) $y_1[n] = x[n-3]$, (ii) $y_2[n] = x[4-2n]$, and (iii) $y_3[n] = x[-n-2]$.

- ^{C)} Test for linearity, time-invariance, causality, and stability properties for ⁽⁴⁾ the CT system described by $y(t) = x(t) \cos (\Omega t)$.
- ²⁾ Convolute the following sequences: $x_1[n] = \alpha^n u[n]$ and $x_2[n] = \alpha^{-n} u[-n]$ ⁽⁵⁾ with $0 < \alpha < 1$.
 - A)
 - B) A system is formed by connecting two sub-systems in cascade. The ⁽⁵⁾ impulse responses of the sub-systems are given by $h_1(t) = e^{-2t}u(t)$ and $h_2(t) = 2e^{-t}u(t)$. Find the overall impulse response h(t) of the system. Also, determine if the system is stable and causal.
- 3) Consider the signal given by $x(t) = \begin{cases} 1, & 0 < t < 1 \\ -1, & 1 < t < 2 \end{cases}$ for one period. (5)
 - A) Determine the trigonometric Fourier series representation of x(t).
 - ^{B)} Using properties of CTFT, find the inverse Fourier transform of $X[j\Omega] = \frac{1}{(a+j\Omega)^2}$ ⁽⁵⁾
- ⁴⁾ Determine the DTFS representation for the following signal (A) $x[n] = \cos\left(\frac{\pi n}{3}\right) + \sin\left(\frac{\pi n}{4}\right)$
 - ^{B)} Find the DTFT of the following signal x[n] = u[n] u[n 6]. Sketch the

(4)

(3)