

Reg.No.					

DEPARTMENT OF SCIENCES, II SEMESTER M.Sc. (Physics) END SEMESTER EXAMINATIONS, MAY/JUNE 2023 NUMERICAL METHODS AND COMPUTATIONAL PHYSICS [PHY5252]

(CHOICE BASED CREDIT SYSTEM - 2020)

Note (i) Answer ALL questions

(ii) Draw diagrams, and write equations wherever necessary

				СО	BL
1A	State and prove the condition for convergence of the series of approximations to a		5	2	3
	root in iteration method.				
1B	Give output of following C programs.	e output of following C programs.		1	4
	(i) #include <stdio.h></stdio.h>	(ii) #include <stdio.h></stdio.h>			
	main()	main()			
	{	{			
	int i,j=0,sum=0;	int i=5,j=10;			
	for(i=1;i<=5;i++)	float q1,q2;			
	sum+=++j*j;	q1=(float)i/j;			
	printf("%d",sum);	q2=i/j;			
	}	printf("%.3f\t%.3f",q1,q2);			
		}			
1C	Convert the following equations into corresponding C statement.		2	1	3
	(i) $A = \frac{kl}{b\cos(x)}$ (ii) $c = \frac{a(b+3)}{a-ab}$				
2A	Solve the following system of equations by LU decomposition method.		5	2	3
	5x - 2y + z = 4				
	7x + y - 5z = 8				
	3x + 7y + 4z = 10				
2B	Given $y'' + y + 1 = 0$ with the boundary conditions $y = 0$ at $x = 0$ and $x = 1$. Find y and $y = 0$ are $y'' + y + 1 = 0$.		3	3	3
	x = 0.75 by taking $h = 0.25$.				
L	I .		l	L	l

2C	Get first order ordinary differential equation for charge on the capacitor in the	2	3	3
	following circuit and give equations to solve it by Euler's method.			
3A	By assuming Newton's forward difference formula, derive general integration formula	5	2	2
3A	and hence obtain trapezoidal rule.	3	2	2
3B	Derive standard five-point formula to solve Laplace equation and explain Gauss-Seidel	3	3	2
ЭБ	iterative method.	3)	2
20		2	3	2
3C	Derive finite difference approximation for first and second order derivatives of y.			2
4A	The distance covered by a particle at different time instants is given below. Find the	5	3	3
	velocity of the particle at $t = 6s$.			
	t (s) 2 3 5 6			
	d (m) 1.41 1.73 2.23 2.45			
4B	Explain (i) if – else and (ii) for statements with syntax and suitable examples.	3	1	2
4C	Get second order Runge – Kutta formula for solving $y' = f(x,y)$	2	3	2
5A	If $Y = a_0 + a_1x$ is the straight line to be fitted to given set of data points (x_i, y_i) where	5	2	2
	$i=0,1,2,\ldots$ m, then get the expressions for fitting parameters a_0 and a_1 .			
5B	How to simulate radioactive decay by Monte Carlo method? Explain by considering	3	4	3
	hypothetical decay A → B.			
5C	What is a pseudo random number? Explain rand() and srand() functions in C	2	4	2
