

Reg.No.										
---------	--	--	--	--	--	--	--	--	--	--

DEPARTMENT OF SCIENCES, II SEMESTER M.Sc. (PHYSICS) END SEMESTER (MAKE UP) EXAMINATIONS, JULY/AUGUST 2023 Quantum Mechanics - II [PHY 5253]

(CHOICE BASED CREDIT SYSTEM - 2020)

Tim	e: 3 Hours Date: 02/08/2023 M/	AX. MARKS: 50		
Note	e (i) Answer ALL questions			
	(ii) Draw diagrams, and write equations wherever necessary			
Q No	Question	Marks	CO	BL
4.0	Final size that appropriate of deposits an ethic for action deposits			
1A 1B	Explain the properties of density matrix for mixed states. Evaluate the first order correction to the energy eigenvalues in the non-degenerate	3	1	2
ID	perturbation theory.	3	2	5
	Given: $H^0 \psi_n^1 + H' \psi_n^0 = E_n^0 \psi_n^1 + E_n^1 \psi_n^0$		_	3
1C	Evaluate the ground state energy for the one-dimensional harmonic oscillator using the	-		
	variational method.	4	2	5
			1	
2A	The general wave function for a two-level system with a time-dependent Hamiltonian			
	$H(t)=H^0+H'(t)$ is given by $\psi(t)=c_a(t)\psi_ae^{-iE_at}+c_b(t)\psi_be^{-iE_bt}$, where ψ_a and	_		2
	ψ_b are eigenfunctions of H^0 . Prove that	5	3	3
	$\dot{c_a}=-rac{i}{\hbar}H_{ab}'e^{-i\omega_0t}c_b$; $\dot{c_b}=-rac{i}{\hbar}H_{ba}'e^{i\omega_0t}c_a$.			
2B	Describe the interaction of electromagnetic waves with an atom using time-dependent	5	3	3
	perturbation theory.			3
	Define lifetimes and half-life of an evolted state. Device the appropriate for lifetimes in			
3A	Define lifetime and half-life of an excited state. Derive the expression for lifetime in terms of Einstein's <i>A</i> coefficient.	4	3	3
3B	Explain differential scattering cross-section and scattering amplitude. Express			_
0.2	differential cross-section in terms of scattering amplitude.	3	4	3
3C	Derive the integral form of the Schrödinger equation.	3	4	3
4A	Prove that			
	$\sigma = \frac{4\pi}{k} Im f(\theta = 0)$	5	4	5
40	κ	<u> </u>		
4B	Arrive at the Klein-Gordon equation for a free particle. What is the discrepancy associated with the probability density in the Klein-Gordon theory?	5	5	3
	associated with the probability density in the Mein-Cordon theory!		1	
5A	Calculate the differential scattering cross-section for scattering from a Coulomb	T 4		
	potential.	4	4	3
5B	Discuss the significance of Dirac equation.	2	5	2
5C	Arrive at the free particle Dirac equation. Explain the concept of antiparticle.	4	5	4
