

Reg.No.									
---------	--	--	--	--	--	--	--	--	--

DEPARTMENT OF SCIENCES, II SEMESTER M.Sc. (PHYSICS) END SEMESTER EXAMINATIONS, MAY/JUNE 2023 Quantum Mechanics - II [PHY 5253]

(CHOICE BASED CREDIT SYSTEM - 2020)

Tim	Time: 3 Hours Date: 26/05/2023 MA		(S: 50	
Note	e (i) Answer ALL questions			
	(ii) Draw diagrams, and write equations wherever necessary			
Q No	Question	Marks	CO	BL
1A	Differentiate between pure and mixed states.	3	1	4
1B	Evaluate the Zeeman splitting for the ground state of H-atom.	3	2	5
1C	Calculate the alpha decay lifetime of $_{84}Po^{212}$ isotope.			
	Given: $m(Po) = 211.988842 u, m(Pb) = 207.976627 u, m(\alpha) = 4.002602 u$	4	2	3
	$1u = 931 MeV/c^2$, $K_1 = 1.980 MeV^{1/2}$, $K_2 = 1.485 fm^{-1/2}$			
		T	1	1
2A	The general wave function for a two-level system subject to a time-dependent state $(W(x))$ is given by $V(x) = \frac{iF}{2}t$ where $V(x) = \frac{iF}{2}t$ where $V(x)$ and			
	perturbation $(H'(t))$ is given by $\psi(t) = c_a(t)\psi_a e^{-tD_a t} + c_b(t)\psi_b e^{-tD_b t}$, where $c_a(t)$ and			
	$c_b(t)$ satisfies	3	3	3
	$c_{a} = -\frac{1}{\hbar}H_{ab}^{\prime}e^{-i\omega_{0}t}c_{b}$; $c_{b} = -\frac{1}{\hbar}H_{ba}^{\prime}e^{i\omega_{0}t}c_{a}$.	Ū	Ŭ	Ŭ
	Using the time-dependent perturbation theory, derive the first and second order			
	approximations to c_a and c_b .			
2B	Apply time-dependent perturbation theory to a two-level system subjected to a	4	3	3
	harmonic perturbation and obtain the expression for transition probability.		Ŭ	0
2C	Derive the expressions for Einstein's coefficients.	3	3	3
0.4	Multiplication the enderthing under few destriction disclosed (as we'd as a Multiplication of the statement of a			
3A	Write down the selection rules for electric dipole transitions. What are the decay routes	4	2	4
	via electric dipole transitions?	4	3	4
3B	For classical hard sphere scattering, the impact parameter is given by $h = R \cos(\theta/2)$			
00	Evaluate the total cross-section. Comment on your results.	3	4	5
3C	Derive the optical theorem. Given: $f(\theta) = \frac{1}{\nu} \sum_{l} (2l+1) \exp(i\delta_l) \sin \delta_l P_l(\cos \theta)$.	3	4	3
	Γ. Γ.			
4A	In the low energy Born approximation, evaluate $f(\theta)$ for the following potentials:			
	$V_0 (r \le a)$	_		-
	1. Solt sphere, $v(r) = \{0 \ (r > a)\}$	5	4	5
	ii. Delta function, $V(r) = \alpha \delta(r - a)$			
4B	Starting from the Klein-Gordon equation, derive the continuity equation. Discuss the	5	5	2
	problems associated with the Klein-Gordon theory.	5	5	5
			-	-
5A	Calculate the differential scattering cross-section for scattering from Yukawa potential.	4	4	3

5C Starting from the Dirac Hamiltonian, arrive at the Dirac equation. Explain the Dirac hole 4 5	5B	Discuss some limitations of non-relativistic quantum mechanics.	2	5	2
	5C	Starting from the Dirac Hamiltonian, arrive at the Dirac equation. Explain the Dirac hole theory.	4	5	4