

Reg.No.

DEPARTMENT OF SCIENCES, IV SEMESTER M.Sc. (Physics) END SEMESTER MAKE-UP EXAMINATIONS, MAY 2023 General Relativity and Cosmology [PHY 6202] (CHOICE BASED CREDIT SYSTEM - 2020)

Time: 3 Hours		Date: 31-05-2023	MAX. MARKS: 50		
N	Iote (i) Answer ALL questions				
	(ii) Draw diagrams, and write	equations wherever necessary			
			Marks	CO	BL
1A	Prove that four velocity and for	ur acceleration are orthogonal	3	1	3
1B	Show that the covariant derivation tensor	tive of a covariant tensor transforms as a	3	1	3
1C	Obtain Einstein's field equation	n using weak field approximation	4	2	2
2A	element: $ds^2 = a^2 (dx^1)^2 + a^2 s$	the <i>first</i> and <i>second kind</i> for the following lir $in^2x^1(dx^2)^2$ where <i>a</i> is a constant	ne 4	1	3
2B	Derive Killing equation for ison	netry	3	2	2
2C	Derive the general relativistic e	quation for precession of planetary orbits	3	2	2
3A	Obtain the general relativistic e planets	equation for the delay in radar echoes from	4	2	2
3B	-	bhere of Kerr black hole. Explain Penrose	4	3	2
3C	Describe Hubble's law with new	cessary equations	2	3	2
4A	ē	toffel symbols of second kind for spherically symmetric, static gravitational tutions.	4	2	3
4B	-	bbtained in previous question, obtain R_{00} , R_1	¹ 4	2	3
4C	Obtain curvature scalar R using previous question	g the components of Ricci tensor obtained ir	¹ 2	2	3
5A	Obtain the Tolman-Oppenheim	ner-Volkoff (TOV) equation	4	3	2
5B		e universe with necessary equations	3	3	2
5C		osed models of the universe can be obtained	3	3	2
