

Reg.No.						
---------	--	--	--	--	--	--

DEPARTMENT OF SCIENCES, IV SEMESTER M.Sc. (Physics) END SEMESTER EXAMINATIONS, APRIL 2023 Nuclear Physics II [6013] (CHOICE BASED CREDIT SYSTEM - 2020)

Time: 3 Hours

Date: 28/04/2023

MAX. MARKS: 50

Note (i) Answer ALL questions

(ii) Draw diagrams, and write equations wherever necessary

		Marks	CO	BL
1 (i)	What are fission isomers?	2	2	1
(ii)	Explain fertile and fissile materials.	2	2	1
(iii)	Which nucleus has more symmetric mass distribution, ²³⁶ U or ²⁵⁷ Fm,	2	2	2
	while undergoing fission?			
(iv)	Define Peak to valley ratio in the context of nuclear fission process.	2	2	1
(v)	On comparing the mass distribution curve of fission of ²⁵² Cf or ²⁵⁶ Fm,	2	2	2
	which of the following has smaller peak to valley ratio? Why?			
2 (i)	Consider the distribution curve of the total kinetic energy released in the	2	2	3
	proton-induced fission of ²³³ U for two cases. The energy of the proton is			
	9.5 MeV in case (a) and 20 MeV in case (b). Which case would have			
	larger energy dip in the symmetric fission compared to the asymmetric			
	fission? Give reason?			
(ii)	Consider two cases of thermal neutron fission of ²³⁹ Pu. (a) Symmetric	3	2	3
	fission with mass 120 each, and (b) asymmetric fission of mass 130 and			
	110.			
	Within liquid drop model which case is expected to have higher total			
	kinetic energy released?			
	What is observed experimentally?			
	Give reason for the experimental observations.			
(iii)	Write down the Briet-Wigner expression for the elastic and reaction	5	1	3
	cross- sections (Do not derive it).			
	Derive the full-width of reaction cross section.			
	Explain the origin of the dip in the elastic cross section just before $E =$			
	E_{λ} , where E_{λ} is the resonance energy?			
3 (i)	A neutron of energy 10 MeV is scattered off an Oxygen nucleus. What	2	2	2
	is its minimum energy after scattering?			
(ii)	What are different methods for the detection of neutrons?	2	2	1

(iii)	Derive the solution of flux from the diffusion equation for an infinite	6	2	2
	planar source.			
4 (i)	Which nucleus would you use to slow down the neutrons effectively,	2	2	2
	hydrogen or calcium? Explain.			
(ii)	Define slowing-down density. Illustrate with an example.	2	2	2
(iii)	Derive the expression for the probability of neutron scattering from	6	2	2
	energy E to lower energy E' for the case of isotropic scattering.			
	Is this probability dependent on the final energy of the scattered			
	neutron?			
	Derive the expression for the average energy of the scattered neutron for			
	the case of isotropic scattering.			
5	Derive the expression for neutron flux for neutrons slowing down in a	10	2	2
	hydrogen medium.			