

Reg.No.

DEPARTMENT OF SCIENCES, M.Sc (PHYSICS)

FOURTH SEMESTER M.Sc (PHYSICS) END SEMESTER EXAMINATION, APRIL 2023

SUB: STATISTICAL MECHANICS (PHY- 6201)

(REVISED CREDIT SYSTEM) DATE: 24-04-2023 (9-12 PM)

MAX. MARKS: 50

TIME: 3 HRS.	

NOTE: ANSWER ALL QUESTIONS

Marks	CO	BL
5	1	1, 2
5	2	2
5	3	2
+4= 5	2	1
4+1=5	3	2

3B	(i) What is Thermodynamic probability?	2+1+2=5	4	2
	(ii) What is the total number of ways in which 20 bosons can be arranged in 20			
	elementary phase cells?			
	(ii) List out the differences between Classical statistics and Quantum statistics			
4A	Show that the particle distribution of an ideal gas in equilibrium using Maxwell- Boltzmann statistics is:	5	4	1, 3
	$f_{\rm MD}(\varepsilon_i) = \mathbf{n}_i = \frac{1}{\mathbf{e}^{[(\varepsilon_i - \mu)/k_{\rm B}T]}}$			
	k_B - Boltzmann constant, T-temperature, μ - chemical potential of the gas			
	Show that entropy of a perfect gas in microcanonical ensemble is:			
4B	$S = Nk_{B} \left[In \left[\left(\frac{V}{N} \right) \left[\frac{2\pi m k_{B}T}{h^{2}} \right]^{3/2} \right] + \frac{5}{2} \right]$	5	5	3
	Where V- volume, N- number of particles, m-mass of the particle, k_B - Boltzmann constant, T- temperature			
5A	What is the common approach in M-B, B-E, and F-D statistics? explain.	2 + 3= 5	5	2
	Derive Planck's law for black body radiation of photon gas using Bose-Einstein			
	statistics.			
5B	The number density of gold atoms is 5.9×10^{28} atoms m ⁻³ .	4+1=5	4	2
	Each atom contributes one free electron for conduction.			
	Obtain the Fermi temperature and examine whether the electron gas is strongly			
	degenerate at room temperature.			