MANIPAL INSTITUTE OF TECHNOLOGY

Reg. No.

(A constituent unit of MAHE, Manipal)

NIPAL

II SEMESTER M.TECH. STRUCTURAL ENGINEERING END SEMESTER EXAMINATIONS, MAY 2023

SUBJECT: Design of Pre-stressed Concrete Structures (CIE 5271)

	Time: Date: 22 /05/2023 MAX. MARKS: 5 Instructions to Candidates: Answer ALL the questions. Missing data may be suitable assumed. Use of IS:1343-2012, IS:784-2001 Use of IS:1343-2012, IS:784-2001					
Q	Descript	tion		М	CO	BT L
1	Design a post-tensioned rectangular Type-2 PSC simply supported beam of span 25 m to carry total service load of 20 kN/m excluding self weight. Assume M-50 grade concrete. Take allowable tensile strength of concrete as 2 N/mm ² . Take fpk = 1700 MPa. The strength of concrete at transfer can be taken as $0.7f_{ck}$. Long term loss of pre-stress is 15%. Sketch the suitable parabolic cable profile. Check the critical sections for permissible stresses and ultimate moment.			10	CO1	4
2a	A two span continuous beam, ABC of cross-seprestressed with cable profile as shown in fig applied at one end C, Determine the for C00000000000000000alculate increase in the lengt support C to support B only. Assume $\mu = 0.3$ a = 2800 mm ² , Ep = 200GPa.	ection 400 mm wi jure. If a prestress rce in the cable th of the cable con and wobble effect = 0.3 m 6.0 m 6.0 m	de x 1100 mm deep, is ing force of 3000 kN is over the support B. isidering the length from = 0.005/meter length, Ap	05	CO1	5
2b	Design the bearing plate and the end zone reinfor tensioned beam. The beam is having rectangular deep. A prestressing force of 1000 kN is applied tendon, at the ends of the beam is 50 mm below	orcement for the for r cross-section 300 d by a single tendor the CGC. Take M	llowing bonded post mm wide and 500 mm n. The eccentricity of the I 45 grade concrete.	5	CO1	4
3	 Figure shows composite T- beam made up of a mm deep and a cast-in-situ slab of 160 mm thick. The beam is simply supported over a effective spaced at 2.0 m c/c. Live load on the slab is 5. of Inertia of the composite section about the cent 10⁹ mm⁴. Grade of concrete is M40 in precast web and slab high strength wire fpk = 1500 MPa. The long web is unpropped when slab is cast. (a) Design post tensioned precast web (b) of precast web and cast-in-place slab. 	a post-tensioned ril k and 1400 mm wid e span of 10 m. T .0 kN/m ² and finish ntroidal axis (show) ab. The precast we term loss in prestr Check for the con	 300 mm thick and 700 dth. The composite beams are h load 3 kN/m². Moment n in the figure) is 29.1 x The post tensioned using ress is 15%. The precast is 15% is post tensioned using ress is 15%. 	10	CO3	5

MANIPAL INSTITUTE OF TECHNOLOGY

	MANIPAL (A constituent unit of MAHE, Manipal)			
	$\begin{array}{c} & 1400 \\ & 160 \\ \hline \\ & 160 \\ \hline \\ & 572 \\ & 572 \\ & 150 \\ \hline \\ & 150 \\ \hline \\ & 300 \\ \end{array}$			
4	A continuous pre-stressed concrete rectangular beam with section 500 mm x 1200 mm is prestressed with bonded tendon profile as shown in the figure (eccentricity of the cable is in mm). Take Pe = 2000 kN. a) Draw thrust line due to prestress only b) Evaluate the stresses in concrete at section mid of span BC, if the beam is loaded with live load of 20 kN/m over left span AB and no live load on the right span BC.		CO4	5
5a	 A non-cylindrical pre-stressed concrete pipe of internal diameter 400 mm and length 5 m, is required to with stand a working pressure of 1.5 N/mm². With following data: i) circumferential winding by the process of counter weight/break, ii) high tensile wire of 4 mm diameter with ultimate strength 1570 N/mm², iii) M-40 grade concrete, iv) minimum compressive stress under working load to be 1.5 N/mm², v) coat thickness as 25 mm,vi) strength of concrete at winding 30 MPa and at detensioning longitudinal 20 MPa, vii) bedding angle = 120^o & θ = 180^o. a) Design pipe thickness, longitudinal and circumferential pre-stressing forces and spacing of wires. b) Evaluate stress induced in the core at factory test due to internal pressure. c) Evaluate compressive stress induced in the core due to circumferential winding at factory test. 		CO5	4
5b	Evaluate the number of prestressing wires required for the precast plank of (type-1) composite slab for flexural with the following data. Width of the slab = 0.40 m, effective span 3.5 m, thickness of the precast plank = 60 mm, thickness of the cast-in-situ topping slab = 60 mm, grade of concrete in precast plank = M60, grade of concrete in topping = M20. Assume pre-tensioned 7 mm wire, fpk = 1500 MPa, are located at mid-depth of the precast plank. During casting of the topping, planks are not propped. Live load on slab = 3 kN/m ² , and finish load = 2 kN/m ² . Assume long term loss as 20%. Take Moment of Inertia of composite section about its centroidal axis as $43x10^6$ mm ⁴ . Centroid of the composite section is located at 52 mm from the bottom surface of the plank. Evaluate the compressive stress in the plank for permissible stresses at service only.	5	CO3	4