II SEMESTER M.TECH. (STRUCTURAL ENGINEERING) END SEMESTER EXAMINATIONS, May/June 2023

SUBJECT: EARTHQUAKE RESISTANT DESIGN OF STRUCTURES (CIE- 5272)

REVISED CREDIT SYSTEM (24/05/2023)

Time: 3 Hours

MAX, MARKS: 50

Instructions to Candidates:

- Answer ALL the questions.
- Missing data may be suitable assumed.
- Use of IS -1893 2016, IS -1893 1984, SP:16, IS 13920 & IS 456-2000 is permitted

Q. Vo	Question	Marks	СО	BL
1	The mass of a 3 storey shear building together with its undamped vibration mode shape and frequencies are shown below. Using acceleration response spectrum values for $\zeta = 5\%$ and for soft soil (refer IS -1893 – 2016). Evaluate the response (displacement, elastic force vector, base shear and overturning moment) when subjected to earthquake ground acceleration of 0.15g. Height of each storey is 3.5 m. (Fig. Q1) $\omega = \begin{cases} 6 \\ 12 \\ 18 \end{cases} \text{ rad/sec} \qquad \Phi = \begin{pmatrix} 1 & 1 & 1 \\ 0.7 & -0.4 & -1.1 \\ 0.2 & -0.5 & 1.4 \end{pmatrix}$ $m = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 8 \end{pmatrix} 10^3 \text{ kg}$	10	3	5
2A	Evaluate the earthquake response of a generalized SDOF system of uniform cantilever beam of height 20 m subjected to base displacement of Vg (t). The properties of the system are $m = 20000 \text{ kg/m}, \text{ EI} = 200 \times 10^8 \text{ N-m}^2, \zeta = 5\%. \text{ Take Spv} = 15 \text{ cm/sec}$ $\psi(x) = 1 - \cos \frac{\pi x}{2L}$ Asses the maximum base shear and moment		2	5
2B		2	1	3
	(ii) list the difference between Magnitude and Intensity of an earthquake?	3	1	4

3	Design the reinforcement for a column of size 400 mm ×600 mm, subjected to the following forces. The column has an unsupported length of 3.5 m and is braced against side sway in both directions. Use M -30 grade concrete and Fe415 steel.				10	5	6
	Dead Load Live Load Seismic Load						
	Axial Load (kN)	1000	700	600			
	Moment (kN-m)	60	45	120			
4	A three storey shear building has five transverse and four longitudinal frames. The location of these frames is shown in Fig. Q4. The relative stiffness of these frames are $K_A = 4.0$, $K_B = 3.0$, $K_C = 2.0$, $K_D = 1.0$, $K_E = 1.0$, $K_F = 1.5$, $K_G = 2.0$, $K_H = 2.5$ and $K_I = 3$. If the design seismic force in transverse and longitudinal direction is 500 kN, evaluate the same for different frames. Assume center of mass at geometric center of the building.					5	5
5	A Reinforced concrete chimney of height 25 m is to be constructed in Patiala on hard soil. Let the outer diameter at the base and top be 4 m and 3 m respectively. Let the wall thickness of the structure shall be 0.3 m throughout the height. Let there be a lining 0.1 m thick. Evaluate earthquake forces on this chimney. Use $I = 1$, $R = 3$ and $E_C = 2.0 \times 10^7 \text{ kN/m}^2$					5	5

Fis. Q4