S. P. S. Chum
Reg. No.

II SEMESTER M.TECH. (CHEMICAL ENGINEERING) MAKEUP EXAMINATIONS, June-July 2023

SUBJECT: Optimization of Chemical Processes [CHE5251]

REVISED CREDIT SYSTEM

Time: 3 Hours

Date: 28/06/2023

Time: 9:30 -12:30 PM

MAX. MARKS: 50

Instructions to Candidates:

- Answer ALL questions.
- Missing data may be suitably assumed.

1A	A Shell and tube heat exchanger has a total cost of $C = \$7000 + \$250D^{2.5}L + \$200D L$, where D is the diameter and L is the length. What is the absolute and the relative sensitivity of the total cost with respect to the diameter? If an inequality constraint exists for the exchanger $20\left(\frac{\pi D^2}{4}\right)L \ge 300$; how must the sensitivity calculation be modified?	05
1B	Empirical cost correlations for equipment are often of the following form:	05
	$\ln C = a_0 + a_1 \ln S + a_2 (\ln S)^2$	000000
	Where C is the base cost per unit and S is the size per unit. Obtain an analytical expression for the minimum cost in terms of S , and, if possible, find the expression that gives the value of S at the minimum cost. Also write down an analytical expression for the relative sensitivity of C with respect to S .	
2A	What are three major difficulties experienced in formulating optimization problems?	05
2В	A reactor converts an organic compound to product P by heating the material in the presence of an additive A. The additive can be injected into the reactor, and steam can be injected into a heating coil inside the reactor to provide heat. Some conversion can be obtained by heating without addition of A, and vice versa. In order to predict the yield of P, Y_P , (Ib mole product per Ib mole feed), as a function of the mole fraction of A, X_A , and the steam addition S (in lb/lb mole feed), the following data were obtained. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	05
3A	Explain the scope of optimization in five different areas with one example for each area	05
3B	Find the model parameter of $y = \theta_0 + \theta_1 x$ with the following data using the normal equation of least squares method: i.e. $\hat{\theta} = \left[x^T x\right]^{-1} x^T y$	05
	xi 0.5 1 2.1 3.4	
	Yi 0.6 1.4 2.0 3.6	

4A	If you add a feed stream to the equilibrium stage shown in the figure, determine the number of degrees of freedom for a binary mixture $(Q = \text{heat transferred})$.	03
	rection for a binary inixture (& near transferred).	
	Feed	
4B	Determine if the following objective function	04
4D		
	$f(\mathbf{x}) = 2x_1^3 + x_2^2 + x_1^2x_2^2 + 4x_1x_2 + 3$	
	has local minima or maxima. Classify each point clearly.	
4C	Determine the convexity or concavity of the following objective functions	03
+0		
	$(a) f(x_1, x_2) = (x_1 - x_2)^2 + x_2^2$	
	$(b) f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2$	
	$(U)J(\lambda_1,\lambda_2,\lambda_3)-\lambda_1+\lambda_2+\lambda_3$	
	$(c) f(x_1, x_2) = e^{x_1} + e^{x_2}$	
		00
5A	The total annual cost of operating a pump and motor C in a particular piece of equipment	02
	is a function of x, the size (horsepower) of the motor, namely	
	$C = \$500 + 0.9x + \frac{\$0.03}{150,000}$	
	$C = $300 + 0.9x + \frac{130,000}{x}$	
	Find the motor size that minimizes the total annual cost.	
5B	Construct Newton's optimization algorithm and Solve the following objective function using Newtons's	03
JD	method. $f(x) = x^2 - 3x - 20$. Consider an initial guess as 0.5 and tolerance (ϵ) as 10^{-3} . Show a	
	minimum of two iterations of the algorithm.	05
5C	A chemical manufacturing firm has discontinued production of a certain unprofitable product line. This	03
	has created considerable excess production capacity on the three existing batch production facilities. Management is considering devoting this excess capacity to one or more of three new products: Call them	
	products 1,2, and 3. The available capacity on the existing units that might limit output is summarized in	
	the following table:	
	the following table.	
	Unit Available time (h/week)	
	A 20	
	B 10	
	C 5	
	Each of the three new products requires the following processing time for completion:	
	Productivity (h/batch)	
	Unit Product -1 Product-2 Product-3	
	A 0.8 0.2 0.3	
	B 0.4 0.3	
	C 0.2 0.1	
	The sales department indicates that the sales potential for products 1 and 2 exceeds the maximum	
	production rate and that the sales potential for product 3 is 20 batches per week. The profit per batch is	
	Rs20. Rs 6, and Rs 8, respectively, on products 1, 2, and 3.	
	Formulate a linear programming model for determining how much of each product the firm should	
	produce to maximize profit.	