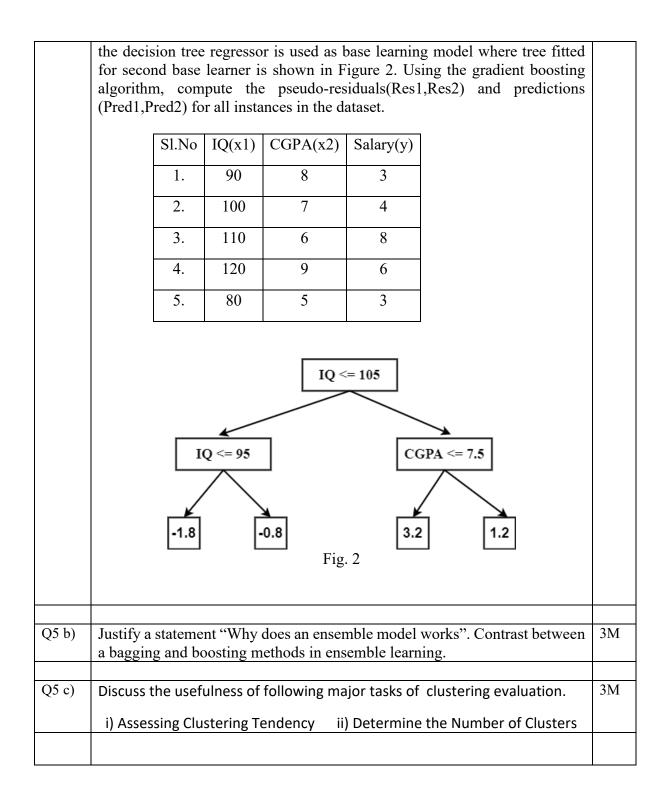
		Reg. No.				
(m)	MANIPAL II	NSTITUTE	OF '	TECH	INOI	.OGY

II SEMSTER M. TECH. (COMPUTER SCIENCE & ENGINEERING) AND (COMPUTER SCEINCE & INFORMATION SECURITY) ENDSEM SCHEME (MAY-2023)

SUBJECT: ADVANCED MACHINE LEARNING-AML [CSE/CSIS 5256] Time: 3 hrs. MAX. MARKS: 50M


Instructions to Candidates:

Answer ALL the questions.

Missing data may be suitably assumed.

Q1 a)	Suppose we have a dataset that consists of the heights and weights of a group of individuals, along with their gender (male or female). The dataset contains 10 individuals:			5M	
	Height (inches)	Weight (pounds)	Gender		
	65	125	Female		
	71	175	Male		
	69	140	Female		
	64	130	Female		
	72	202	Male		
	73	200	Male		
	67	160	Female		
	70	172	Male		
	62	115	Female		
	71 190	190	Male		
	We want to make use of KNN to predict the gender of a new individual who is 68 inches tall and weighs 150 pounds.				
Q1 b)	List some key differences between symbolic and connectionist approaches to learning, and which approach is better suited for concept learning versus machine learning?			3M	
Q1 c)	Illustrate some limitations of the Candidate Elimination algorithm? How can			2M	
	these limitations be addressed?				
				4M	
Q2 a)	Suppose you have a dataset that contains information about customers of an online retailer. The dataset includes the age, income, and purchase history of each customer, as well as whether or not they are a frequent shopper (a binary variable). The retailer wants to use this data to predict which customers are likely to become frequent shoppers, so that they can target				

	them with special promotions. You are tasked with building a KNN classifier to solve this problem.			
Q2 b)	Identify the limitations of Branch and Bound MLKNN, and in what situations might it not be the best approach for KNN-based classification?			
Q2 c)	Illustrate the procedure to measure the quality of a split in a decision tree using the Gini index, and how does it compare to other split criteria such as information gain?	3M		
Q3 a)	Explain how do we compute the gradient of the error function with respect to the network weights during backpropagation?	4M		
Q3 b)	List the key steps involved in the backpropagation algorithm, and how do they contribute to the optimization process?			
Q3 c)	Explain how does the RBF network compare to other machine learning algorithms, such as support vector machines and decision trees, in terms of accuracy and computational efficiency?			
Q4 a)	Given the Bayesian belief network in figure 1, calculate marginal and conditional probabilities P (\neg p3), P (p2 \neg p3), P(p1 p2, \neg p3) and P (p1 \neg p3, p4).	5M		
	$\begin{array}{c cccc} Pr(p_{1})=0.4 & P_{1} & Pr(p_{2} p_{1})=0.8 \\ Pr(p_{3} p_{2})=0.2 & Pr(p_{4} p_{2})=0.8 \\ Pr(p_{3} \neg p_{2})=0.3 & Pr(p_{4} \neg p_{2})=0.5 \\ P_{3} & P_{4} & P_{4} \end{array}$			
	Fig. 1			
Q4 b)	 Suppose we have two features x = (x₁, x₂) and the two class-conditional densities, p(x ω = 1) and p(x ω = 2), are 2D Gaussian distributions centred at points (4, 11) and (10, 3) respectively with the same covariance matrix Σ = 3I (with I is the identity matrix). Suppose the priors are P(ω = 1) = 0.6 and P(ω = 2) = 0.4. i) Suppose we use a Bayes decision rule, write the two discriminant functions g₁(x) and g₂(x). ii) Write the two discriminant functions g₁(x) and g₂(x) using Bayes decision rule 	3M		
Q4 c)	Compare k-medoid with k-means clustering technique with respect to	2M		
	robustness and computational complexity.			
Q5 a)	Consider the dataset shown in Table 1 for which gradient boosting regressor is applied for prediction of salary based on {IQ, CGPA} as features . Here,	4M		

