MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

II SEMESTER M.TECH. COMPUTER SCIENCE AND ENGINEERING

END SEMESTER EXAMINATIONS, MAY 2023

ADVANCED SYSTEMS SOFTWARE [CSE 5253]

Date: 22-05-2023

Time: 3 Hours.

Marks: 50

3M

2M

Instructions to Candidates:

- Answer ALL the FIVE questions.
- Missing data may be suitably assumed.
- 1A. Given total, installment, and tax as floating-point variables and no_of_months as an integer variable, show the output of different phases of a compiler for the input "total = installment * no_of_months + tax".
 3M
- **1B.** Illustrate the concept of input buffering (one and two buffers) with suitable examples.
- 1C. Draw the transition diagram to return tokens for the roman numbers in the range I to X (Example: for the input VI, token generated should be <ROMAN, VI>).4M
- **2A.** Is the following grammar suitable for top-down Parsing? If not, convert the grammar to a form that makes it suitable for top-down parsing.

rexpr \rightarrow rexpr + rterm | rterm rterm \rightarrow rterm rfactor | rfactor rfactor \rightarrow rfactor * | rprirnary rprimary \rightarrow a | b

2B. Draw LR(0) automaton for the below grammar and construct SLR parser table for the same.

$S \rightarrow ABC$	
$A \rightarrow Agd \mid \epsilon$	
$B \to Bd \mid \epsilon$	
$C \to cC \mid \epsilon$	4 M

2C. Verify if the below grammar is LL(1) by constructing the predictive parse table. Show all the necessary steps.

$$\begin{split} S &\rightarrow TXaY \mid pY \\ T &\rightarrow cXYZ \mid \epsilon \\ X &\rightarrow YdT \mid ad \end{split}$$

$$\begin{array}{l} Y \to eYS \mid \epsilon \\ Z \to p \mid a \end{array} \tag{4M}$$

2M

- **3A.** Elucidate synthesized and inherited attributes.
- 3B. i) Write short notes on basic block and flowgraph.ii) For the following intermediate code, form the basic blocks, and draw the flowgraph.

1)	i = 1		
2)	j = 1		
3)	t1 = 10 * i		
4)	t2 = t1 + j		
5)	t3 = 8 * t2		
6)	t4 = t3 - 88		
7)	a[t4] = 0.0		
8)	j = j + 1		
9)	if j <= 10 goto	(3)	
10)	i = i + 1		
11)	if i <= 10 goto	(2)	
12)	i = 1		
13)	t5 = i - 1		
14)	t6 = 88 * t5		
15)	a[t6] = 1.0		
16)	i = i + 1		
17)	if i <= 10 goto	(13)	4 M

- **3C.** For the expression a = b * -c + b * -c, write the
 - i) Intermediate code using three address code.
 - ii) Quadruple representation for the intermediate code in i).
 - iii) Triple representation for the intermediate code in i). 4M

4A. Write the RISC program for the below high-level language statement.

y[i] = x;

(Note: y is an integer array and 4 bytes of memory are allocated for an integer) **2M**

4B.	With neat diagrams, elucidate the client-server and peer-to-peer models. Also, compare these models.	4M
4C.	How is a coordinator process elected using ring algorithm? Illustrate with the help	

of an example. 4M

- 5A. Illustrate the causal data-centric consistency model with appropriate examples. 4M
- 5B. Elucidate client-initiated replicas in the context of content replication and placement.3M

5C.	Write shor				
	i)	Crash failure.	ii)	Omission failure.	3 M