

II SEMESTER M.TECH. (INDUSTRIAL AUTOMATION & ROBOTICS)

End-semester Examination

SUBJECT: EMBEDDED SYSTEM FOR AUTOMATION (MTE 5251)

Date: 22/05/2023

Time: 3 Hours Exam time: 9.30 AM-12.30 PM MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

* Missing data may be suitably assumed and justified.

Q. No.		M	CO/ CLO	PO/LO	BL
1(a)	Embedded systems are essential for controlling and monitoring a variety of machinery, equipment, and processes in industrial automation, which is crucial for enhancing manufacturing processes' productivity, effectiveness, and cost-effectiveness. Discuss the sustainable design of an embedded system utilized in industrial automation that can be estimated and enhanced	4	1	4/7	5
1 (b)	You are a product manager for a technology company, facing a challenging situation regarding launching a highly anticipated new product. Due to unforeseen delays in the market, your company is at risk of incurring significant losses. Your task is to analyze the situation by considering the simple revenue model and proposing strategies to mitigate the potential loss.	4	1	4/2	4
1 (c).	Develop an assembly language program to calculate the factorial of 7 for MSP432P401R and save the result into the memory location 0x20000000.	2	1	4/1	3
2 (a).	You have a robotic arm that needs to be controlled using a DC motor. The motor needs to be turned on and off every 1 second using a blue LED as an indicator. Write an embedded C program for MSP432P401R that uses the one-shot mode of Timer32 to toggle the blue LED every 1 second and control the DC motor accordingly. Consider the Mclock = 3MHz	5	2	4/1	3
2 (b).	 A 3-stage pipelined CPU to run 3-iteration of the following code. MOV R1, #2 L1 AND R2, R2, #1 B L1 MOV R3, #3 MOV R4, #4 (a). Determine the number of instruction cycles the CPU requires to execute the program with the help of a pipelining diagram. (b). Also, calculate the number of branch penalties. 	3	2	4/2	4

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent unit of MAHE, Manipal)

	Bits	7	6	5	3-2	1	0				
	TIMER32_y-	ENABLE	MODE	IE	PRESCALE	SIZE	ONESHOT				
	>CONTROL										
	TIMER32_CONTROL_XX_	1-enable,	0- free	1- enable	00=/1,	1- 32	1-oneshot,				
	x	U-disable	runnin	interr	10=/256	bit,	0-wrap				
			mode,	0- disabl		0- 16 bit					
			1- periodic	e		210					
	25	Timer32	INT1 T	32 INT1 IF	Qn T32	2 INT1 IR	QHandler				
	Z6 TIMEr32_INTZ T32_INTZ_IRQN T32_INTZ_IRQHandler										
	TIMER32_y->INTCI	LR	Clear fl	ag							
	TIMER32_y->VALUE Check the counter value										
2(c)	Estimate the clo	ck frequ	iency and	efficien	w of the	5_stage	nineline	2	2	4/1	3
2(0)	Assume the time delay of the circuit in each stage is 0 6 micro second the					econd the	4	4	7/1	5	
	latch delay of 0.0	03 micro	seconds	and the to	tal numbe	or of data	that need				
	to be processed is	30	seconds,			or or data	that need				
	to be processed is	50.									
3 (a)	You are designing	g a digita	al system f	or control	ling the s	peed of a	motor. In	5	3	4/1	3
	your design, you	can use (Complex F	Programma	able Logi	c Devices	s (CPLDs)				
	or Field-Program	mable G	ate Arrays	(FPGAs).		FDGA					
	• Explain t	the diffe	rences bei	tween CP	LDs and	FPGAs	regarding				
	their arch	t on whi	and functions have a second based on the second	onanty?	ad for the	a a nnli aa	tion				
2 (b)	Comment on which would be best suited for this application.							2	2	4/1	2
3(0)	and mention the tire CPU-burst time length given in milliseconds					5	3	4/1	5		
	Job Burst time Priorit Arrival time										
		(1	ns)	у	(m	ns)					
	А	10		5	0	·					
	В	6		2	0						
	С	7		4	1						
	D	4		1	1		_				
	E 5 3 2										
	Calculate the average waiting and turnaround time for the pre-emptive										
2 (a)	priority scheduling algorithm						and AND	2	2	4/2	1
5(0)	gates only			Jwing Tull	cuon ush	ng AUK	anu AND	4	3	4/2	4
	F = A B'CD' + AB'CD' + A B'C'D + A'BC'D										
4 (a)	As a manufacturing engineer, you are instructed to design a PCR for a						PCB for a	3	4	4/1	3
	high-speed digital system. Explain the characteristics of a PCB design in										
	detail to ensure optimal performance and reliability of the digital system.						system.				
4(b)) In an embedded system, the Printed Circuit Board (PCB) plays a crucial					s a crucial	3	4	4/2	4	
	role in determinin	ig the pe	rformance	and reliab	oility of th	ne system	. Examine				
	the importance of PCB in embedded systems.					<u> </u>					
4(c)	Wireless networks have become increasingly vulnerable to security					4	3	4/2	4		
	breaches, raising concerns about data privacy and confidentiality. Develop										
	a digital circuit free from face-around conditions as a design engineer to										
	application. Examine the digital circuit in detail with a proper circuit										
	diagram and analysis.										
5(a)	In the bottling in	ndustrv	engineers	are taske	ed to des	ign an a	utomation	6	3	4/3	5
- ()	circuit using cor	nbinatio	nal logic	with three	e sensors	, S1, S2	, and S3,		-		_
5(a)	diagram and analy In the bottling in circuit using cor	ysis. ndustry, nbinatio	engineers nal logic	are taske with three	ed to des e sensors	ign an a , S1, S2	utomation , and S3,	6	3	4/3	5

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent unit of MAHE, Manipal)

	detecting the bottles' height, width, and company logo, respectively, and				
	two actuators, A1 and A2, directing the bottles to the defective or				
	error/inspection lane based on the input from the sensors. The following				
	conditions should be satisfied by the automation circuit:				
	• If all the Sensors are off, the actuators A1 and A2 do not direct				
	bottles to any of the lanes.				
	• If S1 and S2 are off and S3 is on, the A2 will send the bottle to the error/inspection lane.				
	• If S1 and S3 are off and S2 is on, the A2 will send the bottle to the error/inspection lane.				
	• If S2 and S3 are on and S1 is off, the A1 will send the bottle to the defective lane.				
	• If S2 and S3 are off and S1 is on, the A2 will send the bottle to the error/inspection lane.				
	• If S1 and S3 are on and S2 is off, the A2 will send the bottle to the error/inspection lane.				
	• If S1 and S2 are on and S3 is off, the A2 will send the bottle to the error/inspection lane.				
	• If S1, S2, and S3 are on, then A1 and A2 are off and do nothing.				
	From the above information, estimate the following parts.				
	1. Evaluate the truth table for the above logic.				
	2. Derive the Boolean expression for the combinational circuit.				
	3. Design the combinational circuit using logic gates.				
5(b)	Elaborate the Field-Programmable Gate Arrays (FPGAs) architecture		3	4/1	3
	Also, briefly explain the working principle of Configurable Logic Blocks				
	(CLBs) using a suitable diagram.				