

II SEMESTER M.TECH. (Industrial Automation and Robotics) End Sem Examination

SUBJECT: Machine Learning [MTE 5054] Date: 2/6/2023

Time: 3 Hour

Exam time: 9:30AM-12:30PM

MAX. MARKS: 50

Instructions to Candidates:

• Answer ALL the questions.

• Missing data may be suitably assumed and justified.

Q. No	Question				Μ	CO	PO	LO	BL
1QA	Consider the da	ataset (shown in	Table 1	QA) containing outlook, temperature,	5	1	4	1	3
	humidity, and wi	ndy feature of a pl	ace used for	or training the Naïve Bayes algorithm.					
	Outlook Tompora	turo Humidity Min	dy Diay						
	sunny hot	high fals	se NO						
	sunny hot	high tru	ie NO						
	overcast hot	high fals	se YES						
	rainy mild	high fals	se YES						
	rainy cool	normal tal	se YES						
	overcast cool	normal tru							
	sunny mild	high fals	se NO						
	sunny cool	normal fals	se YES						
	rainy mild	normal fals	se YES						
	sunny mild	normal tru	ie YES						
	overcast mild	high tru	IE YES						
	overcast not	normal fais	SE YES						
		ingii tit							
	Table IQA: datas		1						
	Predict the proba	ability of playing	when the	weather conditions are outlook of rainy,					
	temperature of I	not, numiality of	normai, a	nd windy true using the Naive Bayes					
100	algorithm.		1 .		_			-	
1QB	Consider the classification of flower dataset for predicting the color based on 2				5	1	4	2	4
	features, i.e., brig	htness, and saturat	tion with c	lass as colors red or blue as shown in the					
	Table 1QB. Classify the color with brightness of 50 and saturation of 80 using KNN								
	classifier. Choose the best K value for prediction. Justify the selection of K value for								
	given dataset.								
	Brightness	Saturation	Class						
	40	20	Red						
	50	50	Blue						
	60	90	Blue						
	10	25	Red						
	70	70	Blue						
	60	10	Red						
	25	80	Blue						
	Table 1QB: flow	er dataset for color	r prediction	1					

2QA	Assume that you are working in the factory that produces wind turbines. Consider a set of features such as temperature, wind, energy, etc. You are asked to test the system whether it is faulty or not. Model the anomaly detection algorithm by fitting Gaussian distribution for the given data and how the threshold parameter is selected for the optimal result.			4	1	3
2QB	A new virus is affecting the population. People who have the virus will normally have specific symptoms such as a cough and the loss of the sense of taste and/or smell. It is estimated that 1 in 5 of people who suffer these symptoms have the virus and 1 in 2000 people without these symptoms have the virus. A test for the virus has the following accuracy using SVM classifier. For people with symptoms, the true positive rate is 90% and the false positive rate is 5%. For people without symptoms, the true positive rate is 80% and the false positive rate is 1%. Construct the confusion matrix, discuss accuracy, F1 score, precision and recall of given classifier.		2	4	2	3
3QA	You are asked to collect the dataset of people performing yoga for classification of yoga poses. What are the ethical concerns that you need to pay attention to before you start your project (provide 5 points).	5	3	4	2	3
3QB	You work as a lead data scientist for a bio-sciences company and under your supervision you have a junior Machine Learning engineer. You asked them to develop a model for recognizing 10 different classes of bacteria from 28x28 RGB images. The ML engineer came back to you with their proposed architecture, shown in Fig 3QB. Is there anything wrong with it? Provide the reasoning behind your answer. class MyNet(torch.nn.Module): definit(self, num_inputs, C1, C2, num_outputs): super(MyNet, self)init() self.num_inputs = num_inputs self.num_outputs = num_outputs if C1 != C2: self.expand_channels = nn.Conv2d(C1, C2, 1) self.stem = nn.Conv2d(num_inputs, C1, kernel_size = 5, padding = 2) self.scient = nn.Conv2d(C1, C1, kernel_size = 5, padding = 2) self.scient = nn.Conv2d(C1, C2, kernel_size = 5, padding = 2) self.scient = nn.Conv2d(C1, C2, kernel_size = 5, padding = 2) self.scient = nn.Conv2d(C2, C2, kernel_size = 3, stride = 4) self.scient(x) identity = x x = self.scient(x) identity = x x = self.scient(x) x = self.conv1(x) x = self.conv2(x) if self.expand_channels is not None: identity = self.conv2(x) if self.expand_channels is not None: identity = self.fl(out) out = self.fl(out) self.scient(x) self.scient(x) self.scient(x) self.scient(x) self.scient(x) self.scient(x) self.scient(x) self.scient(x) self.scient(x) self.scient(x) self.scient(x) self.scient(x) self.scient(x) self.scient(x) self.scient(x) self.scient(x) self.scient(x) self.scient(x) self.scient(x)	5	3	4	2	4
	Fig 3QB: sample pytorch code for classification of images					

40 A	The layers of AlexNet architecture is depicted in the Fig 4QA.	5	4	4	2	4
• • •		•	•	-	_	-
	3					
	CONV Overlapping CONV 256 Overlapping Max POOL CONV Max POOL CONV					
	stride=4, 96 3x3, 96 5x5, pad=2 3x3, 256 3x3, pad=1 3x3, pad=1 3x3, pad=1 256 kernels stride=2 384 kernels					
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
	11 55 13 227					
	384 3x3,pad=1 384 3x3,pad=1 3x3,pad=1 3x3,pad=1 256 3x3,pad=2 56 x100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
	$(13+2^{-1}-3)/1 + 1 = 13 + 13 +$					
	13 13 13 9216 0 1000 Softmax					
	4096 4096					
	Fig 4QA. AlexNet Architecture					
	mathematical computation.					
4QB	A custom CNN architecture is tried with different dataset. Justify the reasons for each	5	4	4	2	5
	High Training Error High Training-Validation Error					
	Training Error Training-Validation Error					
	r Loss					
	Training Error					
	→ → →					
	Epoch # Epoch # Low Training Error, High Validation Error Low Training & Validation Error, High Testing					
	Testing Error					
	s S Validation Error S S Validation Error Validation Error					
	Training-Validation Error					
	Training Error					
	Epoch # Epoch #					
50A	You work as a Deep Learning engineer in an self-driving car company and you're	5	4	4	2	5
	given a labelled dataset of 100 images of cars belonging to 10 different categories.					
	recognizing the correct car model. Moreover, your model must be as lightweight as					
	possible meaning that it should contain as few parameters as possible. Your advisor					
	suggests to use the pretrained architecture. Describe your strategy (i.e. training process) to classify the car category that meets the given requirements.					
5QB	Assume that you have images of dimension 128x128x3. These images are processed	5	4	4	2	4
	by a small network consisting of 2 convolutional layers, 1 average pooling layer and 1 linear layer as follows: For the first convolutional layer, the spatial dimensions of the					
	convolutional kernel are $7x7$, there are 256 kernels, the stride is equal to 1 and no					
	padding is used. The image is then processed by a convolutional layer with kernel size					
	applied. Finally this tensor is flattened and passed to a linear layer to classify 10					
	classes. Assume that all layers do not have bias terms. What is the total number of					
	parameters in the network? Provide all the details of your calculation for every steps.				1	1