Question Paper

Exam Date & Time: 28-Jun-2023 (10:00 AM - 01:00 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

Manipal School of Information Sciences (MSIS), Manipal Second Semester Master of Engineering - ME (Embedded Systems) Degree Makeup Examination - June 2023

Digital Signal Processing [ESD 5001]

Marks: 100 Duration: 180 mins.

Wednesday, June 28, 2023

Answer all the questions.

1)	Implement a Radix-2 DIT-FFT algorithm with $N=8$. Compare the number of complex multiplication and addition with that of Direct DFT computation	(10)
2	2)	Sketch the hardware for the following system function using Direct form-I, Direct form-II and Cascade form $H(z) = \left[(z^{-2} + z^{-1} + 1) \ / \ (z^{-2} - 1) \right] + \left[(z^{-1} + 1) \ / \ (z^{-2} + 2z^{-1} + 2) \right]$	(10)
3	3)	Design and Construct the hardware of an FIR filter using frequency sampling technique for the following impulse response $h(n) = 2\delta(n) + 0.5\delta(n-1) + 0.5\delta(n-7)$	(10)
4	1)	Design and construct the hardware for an ideal FIR filter with the following specification using Hamming window. $H_d(e^{jw}) = e^{-5jw} \text{ for } \pi/6 \leq w \leq \pi/2$	(10)
		$H_d(e^{jw}) = 0$; elsewhere.	
5	5)	Design and Construct the hardware using impulse invariance transformation, a digital Chebychev lowpass filter for the following specification $ H(j\Omega) \geq -0.5 \text{ dB } 0 \leq \Omega \leq 50 \text{ rads/sec}$	(20)
		$ H(j\Omega) \le -50 \text{ dB } \Omega \ge 500 \text{ rads/sec.}$	
		Assume the sampling frequency to be 4k rads/sec.	
6	3)	What is Multirate Signal Processing? Demonstrate the expressions both in time domain and frequency domain for the signal which is down sampled by an integer factor D	(10)
7	7)	What are QMF filter banks? Demonstrate the expression for the spectrum of the output of the QMF filter bank	(10)
8	3)	Explain LMS adaptive algorithm. Demonstrate how LMS adaptive algorithm is made use to make the Weiner Noise Canceller Configuration adaptive based on the steepest descent technique	(10)
ç	9)	Explain why MAC operation is implemented in PDSPs hardware? Explain with necessary figures, how convolution is performed using a single MAC unit in PDSPs. Give the difference between a MAC instruction and MAC with data shift instruction	(10)

----End-----