Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

III SEMESTER B.TECH. (BIO+CHE)

END SEMESTER MAKE-UP EXAMINATIONS, JANUARY 2024

ENGINEERING MATHEMATICS III [MAT2124]

REVISED CREDIT SYSTEM

Time: 3 Hours	Date:	Max. Marks: 50
Instructions to Candidates:		
✤ Answer ALL the questions.		

✤ Missing data may be suitably assumed.

Q.NO.	Questions					Marks	CO	BTL				
1A.	Solve $\frac{\partial^2 u}{\partial x^2} = e^{-t} \cos x$ using direct integration, given that $u = 0$					5	3					
	when $t = 0$ and $\frac{\partial u}{\partial t} = 0$ when $x = 0$.			(4)								
1B.	Express $f(x) = x$ as a half-range cosine series in $0 < x < 2$.					(3)	4	3				
1C.	Obtain the first harmonic of the Fourier series for $f(x)$, where $f(x)$ is given in the following table:						4	3				
		x	0	π/3	2π/3	π	4π/3	5π/3]			
		f(x)	1.0	1.4	1.9	1.7	1.5	1.2		(3)		
2A.	Suppose							4	3			
	$\vec{F} = (3x^2 + 6y)\hat{\imath} - 14yz\hat{\jmath} + 20xz^2\hat{k}.$											
	Evaluate $\int_C \vec{F} \cdot d\vec{r}$ from (0,0,0) to (1,1,1) along the path $C: x =$											
	$t, y = t^2, z = t^3.$				(4)							
2B.	Find equations for the tangent plane and normal line to the surface $x^2yz - 4xyz^2 + 6 = 0$ at the point (1,2, 1).					(3)	4	3				
2C.	Expand $f(z) = \frac{1}{z(1-z)}$ in a Laurent series valid for $0 < z < 1$.						2	3				
	Hence using the same Laurent series, find the residue of $f(z)$ at $z = 0$.					(3)						
3A.	Using Cauchy's integral formula for derivatives, compute						2	3				
	$\oint_C \frac{z+1}{z^4+2iz^3} dz$, where C is the circle $ z = 1.5$.			(4)								
3B.	Evaluate $\oint_C \frac{1}{(z-1)^2(z-3)} dz$, where C is the circle $ z = 2$.					(3)	3	3				
3C.	For $f(z) = \frac{\cos z}{z^2(z-\pi)^2}$, examine the points of singularities and their					3	3					
	nature and, hence, find the residues.					(3)						

4A.	If $f(z)$ is analytic, then show that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) ^2 = 4 f'(z) ^2.$	(4)	3	3
4B.	Suppose $S(z) = (z - i)/(iz - 1)$ and $T(z) = (2z - 1)/(z + 2)$. Find $S^{-1}(T(z))$.	(3)	4	3
4C.	Find the flux of $x\hat{i} + y\hat{j} + z\hat{k}$ through the sphere of radius 4 and center at the origin. (Take the unit normal vector \hat{n} pointing outward.)	(3)	1	3
5A.	Solve the equation $u_{xy} - u_{yy} = 0$ using the transformation $v = x$ and $z = x + y$.	(3)	1	3
5B.	Suppose $\rho(x, y, z) = 3x^2y + y^2z^2$. Find $\nabla \rho$ (or grad ρ) at the point (1, -2, -1).	(2)	4	3
5C.	Assuming the most general solution, find the temperature $u(x,t)$ in a laterally insulated bar of length $10cms$, whose ends are kept at zero-degree centigrade, and the initial temperature is given by $u(x,0) = x(10-x), 0 < x < 10.$	(5)	5	3