Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

III SEMESTER B.TECH. (BIO+CHE)

END SEMESTER EXAMINATIONS, DEC 2023

ENGINEERING MATHEMATICS III [MAT2124]

REVISED CREDIT SYSTEM

Time: 3 Hours

Date: 07 Dec 2023

Max. Marks: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitably assumed.

Q.NO	Questions	Marks	CO	BTL
1A.	(i) Solve $u_{xx} - 2u_{xy} + u_{yy} = 0$ using the transformation v = x and $x = z + y$. (ii) Solve $\frac{\partial^2 u}{\partial x \partial t} = e^{-t} \cos x$ using direct integration, given that		5	3
	$u = 0$ when $t = 0$ and $\frac{\partial u}{\partial t} = 0$ when $x = 0$.	(4)		
1B.	Find equations for the tangent plane and normal line to the surface $z = x^2 + y^2$ at the point (2, -1, 5).	(3)	4	3
1C.	Suppose a force field is given by $\vec{F} = (2x - y + z)\hat{i} + (x + y - z^2)\hat{j} + (3x - 2y + 4z)\hat{k}.$ Find the <i>work done</i> in moving a particle once around a circle <i>C</i> in the <i>xy</i> - plane with its center at the origin and a radius of 3.	(3)	4	3
2A.	 (i) Use divergence theorem to evaluate ∬_S <i>F</i>. <i>dS</i>, where <i>F</i> = (x² - yz)î + (y² - zx)ĵ + (z² - xy)k̂, and <i>S</i> is the surface of the rectangular parallelepiped bounded by x = 0, x = a, y = 0, y = b, z = 0, & z = c. (ii) Use Stokes' theorem to find the flux of ∇ × <i>F</i> through <i>S</i>, where <i>S</i> is the upper half surface of the unit sphere centred at origin, and <i>F</i> = (2x - y)î - yz²ĵ - y²zk̂. 	(4)	4	3
2B.	Verify Green's theorem in the plane for $\oint_C (xy + y^2)dx + x^2dy$ where C is the closed curve of the region bounded by $y = x$ and $y = x^2$.	(3)	4	3
2C.	Determine where the following complex mappings $w = f(z)$ are conformal: (i) $f(z) = sin z$ (ii) $f(z) = z^3 - 3z + 1$	(3)	2	3

	(iii) $f(z) = ze^{z^2-2}$.			
3A.	(i) Compute the analytic function $f = u + iv$ where $u(x, y) = x + e^{-x} \cos y$.		2	3
	(ii) Show that $f(z) = x + i4y$ is nowhere analytic on complex plane.	(4)		
3B.	Find the Laurent's series expansion of $f(z) = \frac{1}{z-1} + \frac{3}{(z-1)(z-3)}$ that is valid when $0 < z-1 < 2$. Hence use Laurent's series expansion of f to obtain the residue of f at 1.	(3)	3	3
3C.	Using Cauchy's Residue theorem, determine the value of integral- $\int_{C} \frac{1}{z^{3}(z+4)} dz$ where <i>C</i> is the positively oriented circle $ z+2 = 3$.		3	3
		(3)		
4A.	(i) Let $f(z) = \frac{\cos z}{z^2(z-\pi)^2}$. Examine the points of singularities and their nature and, hence, find the residues for $f(z)$.		3	3
	(ii) Evaluate $\oint_C \frac{dz}{z^2+1}$, where $C: z-1 = 1$.	(4)		
4B.	WITHOUT using the Divergence Theorem find the flux of $x\hat{i} + y\hat{j} + z\hat{k}$ through the sphere of radius 4 and center at the origin. (Take the unit normal vector \hat{n} pointing outward.)	(3)	4	3
4C.	Obtain the first two coefficients in the Fourier series for y, where yis given in the following table:x0 $\pi/3$ $2\pi/3$ π $4\pi/3$ $5\pi/3$ 2π y1.01.41.91.71.51.21.0	(3)	1	3
5A.	Expand the following function as a Fourier Series $f(x) = x \sin x, -\pi < x < \pi, f(x + 2\pi) = f(x)$.	(3)	1	3
5B.	Determine the constant a so that the following vector field is solenoidal:		4	3
	$\vec{V} = (-4x - 6y + 3z)\hat{\imath} + (-2x + y - 5z)\hat{\jmath} + (5x + 6y + az)\hat{k}.$	(2)		
5C.	Assuming the most general solution, find the temperature $u(x, t)$ in a laterally insulated bar of length 10 <i>cms</i> , whose ends are kept at zero- degree centigrade, and the initial temperature is given by $u(x, 0) = x(10 - x), 0 < x < 10$.	(5)	5	3