Question Paper

Exam Date & Time: 12-Jan-2024 (09:30 AM - 12:30 PM)

THIRD SEMESTER B.TECH END SEMESTER MAKEUP EXAMINATIONS, JAN 2024

SIGNALS and SYSTEMS [BME 2125]

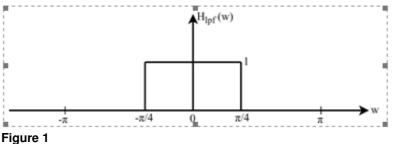
Marks: 50

Duration: 180 mins.

(3)

Answer all the questions.

Instructions to Candidates: Answer ALL questions. Missing data may be suitably assumed.


1)

If $h_{lof}(n)$ is the impulse response of a discrete-time low pass filter with cutoff frequency $\pi/4$

A)

radians per sec and, frequency response $H_{lot}(w)$ as shown in Figure 1,

Interpret the statement - "The discrete-time filter with impulse response, $h(n) = e^{jn\pi} h_{lpf}(n)$ is a high-pass filter with cutoff frequency $3\pi/4$ radians per sec."

Fig

Determine the Z-transform of the discrete-time sequence

(2)

$$x(n) = \{1, 2, -1, 1\}$$

 \uparrow

C)

B)

Further, using the Z-transform, determine the discrete-time Fourier transform ofx(n) .

Without explicitly solving for the Z-transform of $\mathfrak{x}(n)$, determine the region of convergence of the (5) following sequences:

(i)
$$x(n) = \left(\frac{1}{3}\right)^n u(n)$$

(ii)
 $x(n) = \{3, 2, 1, 2, 3\}$
 \uparrow

		$(iii) x(n) = 2^n u(-n-1)$	
2)		Illustrate the "time-reversal" property of Z-transform with suitable examples.	(3)
	A) B)	Consider an LSI system described by the constant coefficient difference equation,	(3)
		$y(n) - 0.5 y(n-1) = x(n) + 0.5 x(n-1)$. Determine the output $y(n)$ of the system, when the input $x(n) = \delta(n)$.	
	C)	Analyze the following linear systems and identify which of these are LSI systems:	(4)
		(i) $y(n) = -2 x(-n-5)$	
		$_{(ii)}y(n)=5\ x\left(\frac{n}{2}\right)$	
		(iii) $y(n) = 2 x(n-3)$	
3)		Justify your answer. The frequency response of the discrete-time high pass filter is given by, $H(w) = 1 - e^{-jw}$.	(3)
	A)	(i) Determine the impulse response $h(n)$ of the system.	
	B)	(ii) Determine and sketch the magnitude response $ H(w) $ over $-\pi \le w \le +\pi$. "The region of convergence of a left-sided sequence is the interior of a circle with radius $R_{x_{x_{x_{x_{x_{x_{x_{x_{x_{x_{x_{x_{x_$	(3)
	0)	$ Z < R_{x_+}$." Illustrate this with an example.	(0)
	C)	Distinguish graphically the following two relations:	(4)
		$x(n)\delta(n) = x(0)\delta(n)$	
4)		$x(n) * \delta(n) = x(n)$ Determine the convolution of two sequences given below:	(4)
	A)	$h(n) = u(n) \underset{\&}{} x(n) = 0.5^n u(n)$	
	B)	using the Z-transform. Two LSI systems with impulse responses as,	(4)
	·	$h_1(n) = u(n) - u(n-1) \& h_2(n) = u(n-1) + \delta(n)$ are connected in series. Determine the overall impulse response of the system.	
	C)	A discrete-time signal is given by	(2)
		$x(n) = \begin{cases} 1; \ -2 \le n \le 2\\ 0; \ n > 2 \end{cases}$	
		Determine graphically the following version of the sequence using the precedence rule: y(n) = x(2n+3)	
5)		Interpret the statement - "The Z-transform is a more general version of DTFT."	(3)
	A)		
	B)	The impulse response of a discrete-time low-pass filter is given as:	(4)
		$h(n) = \delta(n) + \delta(n-1).$	
			Pag

Determine the frequency response H(w) of the system and sketch the magnitude response $|H(w)|_{\text{over}} -\pi \le w \le +\pi$.

Analyze the following discrete-time Linear-Shift Invariant system,

(3)

 $h(n) = a^n u(n-2)$

and identify if the system is Memoryless? Causal? Stable? Justify your answer.

-----End-----