Question Paper

Exam Date & Time: 02-Dec-2023 (09:30 AM - 12:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

THIRD SEMESTER B.TECH. EXAMINATIONS - NOVEMBER / DECEMBER 2023 SUBJECT: ECE 2125- ELECTROMAGNETIC WAVES

Marks: 50		180 mins.
Answ	er all the questions.	
Missi	ng data may be suitably assumed.	
1A)	Given the vectors $\mathbf{M} = -10\mathbf{a}_x + 4\mathbf{a}_y - 8\mathbf{a}_z$ and $N = 8\mathbf{a}_x + 7\mathbf{a}_y - 2\mathbf{a}_z$, find i) unit vector in the direction of $-\mathbf{M}+2\mathbf{N}$, ii) vector $ \mathbf{M} 2\mathbf{N} (\mathbf{M} + \mathbf{N})$.	(4)
1B)	Express the unit vector \mathbf{a}_x in spherical coordinates at the point $\rho = 2.5$, $\phi = 0.7$ and $z = 1.5$.	(3)
1C)	A 2µC point charge is located at A (4, 3, 5) in free space. Find E_p , E_{ϕ} and E_z at P (8, 12, 2).	(3)
2A)	A cylindrical surface ρ = 8 cm contains the surface charge density ρ_s = 5e ^{-20 z} nC/m ² .	(4)
	i) What is the total amount of charge present? ii) How much flux leaves the surface ρ = 8 cm, 1 cm < z < 5 cm, 30° < ϕ < 90°?	
2B)	A uniform surface charge density 20 nC/m ² is present on the spherical surface r = 0.6 cm in free space. Find the absolute potential at P(r = 1 cm, θ = 25°, ϕ = 50°).	(3)
2C)	Given the current density $\mathbf{J} = -10^{-4}(y_{\mathbf{a}_x} + x_{\mathbf{a}_y}) \text{ A/m}^2$, find the current crossing the y = 0 plane in the \mathbf{a}_y direction between z = 0 and 1, and x = 0 and 2.	(3)
3A)	The magnetic field intensity is given in a certain region of space as H = $\frac{x+2y}{z^2} a_y + \frac{2}{z} a_z$ A/m.	Find ⁽⁴⁾
	i) Find current density ii) The total current passing through the surface $z = 4$, $1 \le x \le 2$, $3 \le y \le 5$ in the a_z direction. iii) Show that the same result is obtained using the other side of Stoke's theorem.	
3B)	Derive the expression for magnetic field intensity due to a line charge of finite length.	(3)
3C)	A filamentary current of 10 A is directed from infinity to the origin on the positive x-axis, and then back to infinity along the positive y-axis. Use Biot-Savart law to find magnetic field intensity H at P (0,0,1).	(3)
4A)	Derive Helmholtz wave equation from Maxwell's equation.	(4)
4B)	A good conductor is planar in form and carries a uniform plane wave that has a wavelength of 0.3 mm and a velocity of 3 x 10 ⁵ m/s. Assuming the conductor is non-magnetic, determine the frequency and the conductivity.	(3)
4C)	What is displacement current density? Derive an expression for displacement current density using Ampere's circuital Law.	(3)
5A)	Design a single stub matching network to match a load (200 - j150) Ω and R ₀ = 100 Ω . The operating frequency is 30 MHz. Use the Smith Chart.	(4)
5B)	A transmission line has a characteristic impedance of 50 + j0.01 Ω and is terminated in a load impedance of 73 - j42.5 Ω . Calculate	(3)
	i) Reflection coefficient ii) Standing wave ratio	

-----End-----