

DEPARTMENT OF MECHATRONICS

IV SEMESTER B.TECH. (MECHATRONICS) END SEMESTER EXAMINATION

SUBJECT: Digital and Analog CMOS Design

Subject Code: MTE 2123

Date: 02-12-2023

Time: 3 Hrs Exam Time 9:30 PM – 12:30 PM

MAX. MARKS: 50

Name:....., Registration No:.....

	✤ Answer ALL the questions.					
Q. No.	Questions	M	CO	PO	LO	BL
1A	Design the following Boolean expressions with the help of two input NAND using N-MOS technology. Also, draw the NAND gate implementation of the expression. 1. $AB + \overline{B}C$ 2. $ABC + A\overline{B}C$	4	1	2	2	6
18	Develop a Complementary Metal-Oxide-Semiconductor (C-MOS) circuit for a half adder. Clearly outline the organization of C-MOS components, specifying the transistor arrangement and interconnections. Also, draw its stick diagram. The color coding for the stick diagram is as follows: Polysilicon- Red, P diffusion- yellow, N diffusion- green, Metal- blue, Demarcation line- brown, Contact- black.	4	1	2	2	3
1C	In the context of operational amplifiers, analyze the characteristics that define a voltage feedback amplifier.	2	3	1	1	4
2A	Examine the procedural steps involved in the N-well process design, supported by relevant diagrams.	4	2	1	1	4
2B	Derive the current equation for an N-MOS transistor in the saturation region by incorporating relevant parameters and the cross-sectional view of the MOS.	3	1	2	2	3
2C	Construct a 2:1 multiplexer utilizing the fewest possible pass gate transistors in its configuration.	3	1	2	2	3
3A	Analyze the following terms in the context of CMOS fabrication technology.1. Diffusion2. Ion-Implantation	4	2	1	1	4
3B	Estimate the current 'I' flowing through the 1 k Ω resistor for the circuit shown in Figure 3B.	3	4	2	2	5

	2 mA 2 mA figure 3B 2 mA figure 3B					
3C	In the op-amp circuit shown in Figure 3C, assume that the diode (D) current follows the equation $I = I_{s} \exp(V/V_{T})$. For $V_{i} = 2V$, $V_{o} = V_{o1}$ and $V_{i} = 4V$, $V_{o} = V_{o2}$. Determine the relationship between V_{o1} and V_{o2} .	3	4	2	2	5
4A	Create a circuit employing a single operational amplifier to produce the specified output voltage i.e. $V_0 = 3.5V_A - 7.5V_B + 5.6V_c$	4	4	2	2	6
4B	Analyze the operational amplifier-based sample and hold circuit with the help of supporting mathematics, suitable circuit diagram, and waveforms.	3	4	2	2	4
4C	Design an operational amplifier-based low pass filter at a cutoff frequency of 1 kHz, with a pass band gain of 2. Also, plot the frequency response of the filter.	3	4	2	2	6
5A	The R-2R ladder network is shown in Figure 5A. Determine the output voltage V_{out} if the digital input applied is 1011, the voltage corresponding to the high level is +5 V and the low level is 0 V. $ \begin{array}{c} D_{0} & D_{1} & D_{2} & D_{3} \\ & & & \\ &$	4	5	2	2	5

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent unit of MAHE, Manipal)

	Figure 5A					
5B	Examine the integrator circuit based on operational amplifiers, utilizing pertinent mathematical expressions and appropriate diagrams, in the given input situations.a. Unit Impulseb. Square wave	4	4	2	2	4
5C	Explain how the virtual ground in an op-amp different from electrical ground?	2	4	1	1	2