

III SEMESTER B.TECH. END SEMESTER EXAMINATIONS, DECEMBER- 2023

SUBJECT: ENGINEERING MATHEMATICS III _ MAT 2121

Branch: Mech/IE/MT/Aero/Auto

Time: 3 Hours

(05/12/2023)

MAX. MARKS: 50

Instructions to Candidates:

- Answer **ALL** the questions.
- Missing data may be suitably assumed.

Q .	Question	Μ	CO	Bloo
No				ms Taxo
1A	Solve $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$, $0 < x < 1$, $t > 0$, $u(x, 0) = (1 - x^3)$, $u(0, t) =$	4	CO2	4
	$(1-t^3)$, $u(1,t) = 0$ and $\frac{\partial u}{\partial t}(x,0) = 50x$. Compute u for 3 time			
	levels by taking $h = \frac{1}{4}$.			
1B	Solve $u_{xx} + u_{yy} = 0$, $0 < x < 1$, $0 < y < 1$ subjected to $u(x, 1) =$	3	CO2	3
	$x^{3} - 3$, $u(0, y) = y^{3} - 3$, $u(1, y) = 4$, $u(x, 0) = 2$ with $h = \frac{1}{3}$.			
1C	Use Crank Nicolson's method to solve	3	CO2	3
	$\left \frac{\partial u}{\partial t} = \frac{1}{16} \frac{\partial^2 u}{\partial x^2}, 0 < x < 1, t > 0, \ u(x, 0) = 0, \ u(0, t) = u(1, t) = 100t. \right $			
	Choosing $h = \frac{1}{4}$ and $\lambda = 1$, compute <i>u</i> for one time step.			
2A	Find the Fourier series expansion of $f(x) = x^2$, in the interval $(0, 2\pi)$ where $f(x + 2\pi) = f(x)$.	4	CO3	4
2B	Solve $y'' = y + x(x - 4)$ with $y(0) = 0$, $y(4) = 0$ and $h = 1$, using finite difference method.	3	CO1	3
2 C	Find the half range sine series of $f(x) = \begin{cases} x & 0 < x < 1 \\ 2 - x & 1 < x < 2 \end{cases}$	3	CO3	3
	Hence Deduce $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$			
3 A	Show that $\vec{F} = (6xy + z^3)\hat{\imath} + (3x^2 - z)\hat{\jmath} + (3xz^2 - y)\hat{k}$ is	4	CO4	4
	irrotational. Find φ such that $\vec{F} = \nabla \varphi$.			

3B	Find the Fourier transform of $f(x) = \begin{cases} 1 - x & \text{if } x \le 1 \\ 0 & \text{if } x > 1 \end{cases}$. Hence								3	CO3	4
	evaluate \int_0^{∞}	$\left(\frac{\sin t}{t}\right)$	$\left(\frac{1}{2}\right)^2 dt.$								
3 C	Find the angle between the surfaces $z = x^2 + y^2$ and $z = \left(x - \frac{1}{\sqrt{z}}\right)^2 + \frac{1}{\sqrt{z}}$									CO4	2
	$\left(y - \frac{1}{\sqrt{6}}\right)^2$ at the point $\left(\frac{1}{2\sqrt{6}}, \frac{1}{2\sqrt{6}}, \frac{1}{12}\right)$.										
4 A	Verify Green's theorem in the plane for $\oint_C (xy + y^2)dx + x^2dy$, where the closed curve of the region bounded by $y = x$, $y = x^2$.								4	CO4	4
4B	The following table gives the variation of a periodic current 'A' over a period T								a 3	CO3	2
	t (sec.)	0	T/6	T/3	T/2	2T/3	5T/6	Т			
	A (amp.)	1.9 8	1.30	1.05	1.30	-0.88	-0.25	1.98			
	Show that there is a constant part of 0.75 Amp in the current A and obtain the amplitude of the first harmonic.										
4 C	Find the work done in moving a particle in the force field $\vec{F} = 3x^2i + (2xz - y)j + zk$ along the line from (0,0,0) to (2,1,3).									CO4	3
5A	Solve the wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ using the transformation $v = x + c^2 \frac{\partial^2 u}{\partial x^2}$: + 4	CO5	4
	$ct, w = x - ct$ subject to the conditions $u(x, 0) = \varphi(x)$ and $u_t(x, 0) = 0$										
5B	Solve the partial differential equation $\frac{\partial^3 z}{\partial x \partial y^2} + xy + \sin(2x - 3y) = 0$							= 0 3	CO5	2	
	by direct integration.										
5 C	Using Stoke's theorem, evaluate $\int_C (x + y)dx + (2x - z)dy + (y + z)dz$ where <i>C</i> is the boundary of the triangle with vertices (2, 0, 0), (0, 3, 0) and (0, 0, 6).							3	CO4	4	