Duration: 180 mins.

Exam Date & Time: 01-Dec-2023 (02:30 PM - 05:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

FIFTH SEMESTER B.TECH. EXAMINATIONS - NOVEMBER / DECEMBER 2023 SUBJECT: ECE 3151-ANALOG AND DIGITAL COMMUNICATION

ANALOG AND DIGITAL COMMUNICATION [ECE 3151]

a

Marks: 50

Answer all the questions.

Missing data may be suitably assumed.

- 1A) With neat diagram, describe the balanced modulator based double sideband suppressed carrier (DSB-SC) generation supported with the relevant expressions. Also explain the quadrature null effect in coherent detection of DSBSC modulated signal with neat block diagram and relevant (5) expression.
- 1B) Given $c(t) = 20\cos 2\pi \times 10^6 t$ and $m(t) = 5\cos 4\pi \times 10^3 t$.

i) C(t) and m(t) are used to generate an amplitude modulated (AM) signal with $\mu = 0.707$. Find bandwidth (BW) and power.

ii) C(t) and m(t) are used to generate a frequency modulated (FM) signal such that the maximum (3) frequency deviation is 4 times amplitude modulated signal bandwidth. Find the coefficient of the term $\cos 2\pi (512 \times 10^3)t$ in the resultant FM expression.

1C) Obtain Fourier transform of signal
$$e^{-t}u(t)$$
. Show the calculation steps. (2)

2A) Consider two signals s1(t) and s2(t) defined over the interval $0 \le t \le T$. Determine the orthonormal basis functions and express the signals in terms of basis functions.

$$s_{1}(t) = \begin{cases} 2, & \text{for } 0 \le t \le T \\ 0, & \text{Otherwise} \end{cases}$$

$$s_{2}(t) = \begin{cases} -4, & \text{for } 0 \le t \le T/2 \\ 0, & \text{Otherwise} \end{cases}$$

$$(5)$$

- 2B) Derive the impulse response of a matched filter that gives the maximum value of output SNR. (3)
- 2C) Assume that three signals $s_1(t)$, $s_2(t)$ and $s_3(t)$ can be represented using two orthonormal basis functions $\Phi_1(t)$ and $\Phi_2(t)$. The coordinates of these signals are $s_1 = (3, 1)$, $s_2 = (-2, -3)$ and $s_3 = (-1, -3)$. Draw the constellation diagram and express the three signals $s_1(t)$, $s_2(t)$ and $s_3(t)$ as a linear combination of the (2) given basis functions.
- 3A) Consider the binary data sequence 1 0 0 0 1 1 1 which is applied to the input of a duo binary system.
 i) Determine the output of the duo-binary coder and the corresponding receiver output, without a precoder.
 ii) Determine the output of the duo-binary coder and the corresponding receiver output, with a precoder.

(5)

Assume reference bit to be 1.

3B)	Describe granular noise and slope overload distortions in delta modulation. How can we reduce their effect?	(3)
3C)	For the given sequence "11100111", plot the resulting waveform, assuming that following PAM format is used. i) NRZ unipolar ii) NRZ bipolar	(2)
4A)	With relevant mathematical expressions, discuss the ideal solution for minimizing the ISI effect. What are the limitations of this ideal solution? How can these limitations be addressed using a practical solution? Give the relevant mathematical expressions.	(5)
4B)	Derive the expression for the average probability of symbol error for coherent binary PSK detection with all intermediate steps. Assume AWGN channel.	(3)
4C)	The binary data sequence 1 0 0 1 0 0 1 1 is applied to the input of a DPSK transmitter. Determine the differentially encoded sequence and transmitted phase. Assume the initial reference bit as 1 .	(2)
5A)	Construct minimum variance Huffman code for the given source probabilities pk=[0.1, 0.2, 0.3,0.4] . Also, determine the average code length of this Huffman code.	(5)
5B)	Determine the entropy, efficiency, and redundancy of the Huffman code as given in Q5A.	(3)
5C)	Determine the minimum variance of this Huffman code as given source coding techniques in Q5A.	(2)

-----End-----