Exam Date & Time: 09-Jan-2024 (02:30 PM - 05:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

FIFTH SEMESTER B.TECH END SEMESTER MAKEUP EXAMINATIONS, JAN 2024 MATHEMATICAL FOUNDATIONS FOR DATA SCIENCE-III [MAT 3151]

Marks: 50

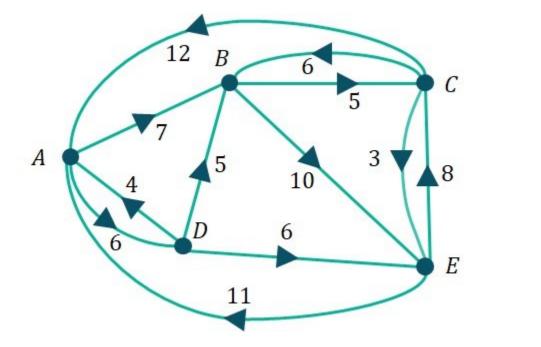
Duration: 180 mins.

(3)

Α

Answer all the questions.

Instructions to Candidates: Missing data may be suitably assumed


1) If G is a graph with n vertices and minimum degree $\delta(G) \ge \frac{n-1}{2}$, then prove that G is connected. Give an example for a graph on 7 vertices with minimum degree 3. (3)

A)

- B) If $diameter(G) \ge 3$, then show that $diameter(\overline{G}) \le 3$. Hence, show that every non trivial self complementary graph has diameter 2 or 3. (3)
- C) Let G be labelled graph with A(G) or A as its adjacency matrix. Prove that the $(i,j)^{th}$ entry of A^k is the number of walks of length k from the vertices v_i to v_k. Write the adjacency matrix A of complete graph K₅ and find the $(1,5)^{th}$ entry of A³. (4)
- Prove that a tree on n vertices has n-1 edges. Draw a tree with 8 vertices having exactly 2 pendant vertices.
 (3)
 - A)
 - B) Define betweenness centrality. Obtain the betweenness centrality of all the vertices in

(i) a cycle graph on 6 vertices and (ii) a complete bipartite graph, $K_{1.n-1}$.

C) Using Dijktra's algorithm, obtain the shortest path from the vertex B to every other vertices for the graph as shown below.

(4)

(3)

(4)

- 3) Obtain the determinant of adjacency matrix of (i) a cycle graph on 8 vertices (ii) a path graph on n vertices (iii) a graph G which is obtained by removing one edge from a complete graph on 4 vertices, by obtaining all the elementary spanning subgraphs and using the formula
 A) det(A(G)) = ∑(-1)^{n-c₁(H)-c(H)} 2^{c(H)},
 (3) where summation runs over all elementary spanning subgraphs H of G and c₁(H) and c(H) are the number of components which are K₂'s and cycles respectively.
 - B) Find the highest power of 5 dividing 65!.
 - C) i) Find the discriminant of $f(x,y) = 13x^2 + 17xy + 19y^2$.

ii) Give an example of a binary quadratic form f(x,y) with the discriminant d = 8.

4)		Compute the day for the date April 1, 2003; using the formula	
	A)	$d \equiv N + [2.6M - 0.2] + Y + \left[\frac{Y}{4}\right] + \left[\frac{c}{4}\right] - 2C - (1 + L)\left[\frac{M}{11}\right] \pmod{7}.$	(3)
	B)	Find the remainder when 15! is divided by 17.	(3)
	C)	Encipher the message "HAVE A NICE TRIP" using a Vigenère cipher with the keyword "MATH".	(4)
5)		Find the remainder when 444 ⁴⁴ divided by 7.	(2)
	A)		(3)
	B)	Find the number of integers in the set $S = \{1,2,3,,1800\}$ that are divisible either by 3 or 5.	(3)
	C)	i) Compute the Jacobi symbol $\left(\frac{25}{77}\right)$.	
		ii) Compute the Legendre symbol $\left(\frac{9}{13}\right)$.	(4)

-----End-----