## **Question Paper**

Exam Date & Time: 10-Jan-2024 (02:30 PM - 05:30 PM)



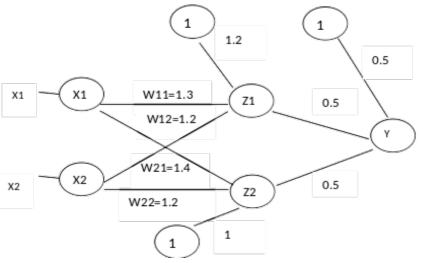
## MANIPAL ACADEMY OF HIGHER EDUCATION

## SEVENTH SEMESTER B.TECH MAKEUP EXAMINATIONS, JAN 2024

Pattern Recognition [BME 4068]

Marks: 50

A)


## Answer all the questions.

Instructions to Candidates: Answer ALL questions Missing data may be suitably assumed

- How Bayes' theorem for a given feature vector "X", utilises likelihood ratio for analysing classification (3) problems? Explain.
  A)
  B) Apply the Complete linkage algorithm to find two clusters from the given three clusters: {(1,1),(2,2)}, (4) {(10,10), (11,12)}, { (15,25) }, {15,27}. Use city block distance.
  - C) Construct the workflow diagram for a pattern recognition system and highlight the challenges of each (3) stages.
- 2) Find a decision boundary between the following classes. The values of feature-x for the given subjects (3) of a Group1 are: 65,61,60,58,51,54,58,63,71,74. Similarly the subjects of Group2 had x values:

   A) 91,84,79,72,86,77,79,82. Draw the nature of the given classes using histogram plot.
  - B) Apply Forgy's algorithm to generate two groups of patients having their weight (in KGS) and height (in (4) feet) for analysing their BMI. The (weight, height) of samples are:(52,5), (59, 5.5), (72, 6), (88,6).
    (92,6.2)
  - C) Design and test an artificial neuron to implement a AND gate function using a McCulloch-Pitts model. (3)
- 3) What are different types of learning methods. Explain the one which uses target along with the input (3) during the training.
  - B) Identify the rules that are important for the training of a perceptron neuron for classification. Explain the (4) training procedure with an appropriate example.
  - C) Explain how the ECG can be classified based on heart rate details. Draw suitable block diagram (3) indicating various stages of the system.
- 4) Find the optimal decision boundary for the following two classes where the class-A has the feature-x is (3) normally distributed with  $\mu$ A=2, and  $\sigma$ A=2. For class-B also "x" is normally distributed with  $\mu$ B=7, and  $\sigma$ B=3. The prior probabilities are P(A)=0. 7 and P(B)=0.3. Draw the class conditional densities and define an optimal decision boundary?
  - B) Find the output response of the following backpropagation net. The network is presented with the input pattern (4) [0,1] and the target output is 1.Use a learning rate  $\alpha$ =0.25 and binary sigmoidal activation function.

Duration: 180 mins.



- C) What are the significance of True Positive, and True Negative samples for a ML model. Calculate the (3) value Sensitivity and Specificity of a model developed for screening anaemia, from the following details: True positive=5250, True negative=4750, False positive=1000 and False negative =750.
  - Illustrate biometric pattern usage for authenticating patient report with an example. Discuss the (3) benefits of the system over traditional.

A)

5)

- B) Compare artificial neuron and biological neuron. List two advantages of artificial neural network. (3)
- C) Calculate the value of posterior probability P(Dengue=YES/Rash) using Naive Bayesian theorem using the given (4) table 5 (c). Interpret the answer.

| Rash | Nausea | Headache | Fever | Joint<br>Pain | Tested For<br>Dengue |
|------|--------|----------|-------|---------------|----------------------|
| Yes  | Yes    | Yes      | Yes   | Yes           | YES                  |
| Yes  | No     | Yes      | No    | No            | NO                   |
| Yes  | Yes    | No       | Yes   | Yes           | YES                  |
| No   | No     | Yes      | Yes   | Yes           | NO                   |
| Yes  | No     | No       | No    | No            | NO                   |
| Yes  | Yes    | No       | Yes   | No            | YES                  |
| No   | Yes    | Yes      | No    | No            | NO                   |
| Yes  | Yes    | Yes      | Yes   | Yes           | YES                  |

-----End-----