Type: DES

- Q1. Explain the methods used to analyse Carbon, Nitrogen, Hydrogen and sulfur content in Coal. (4)
- Q2. How is natural gas produced and obtained? Explain. (3)
- Q3. Explain about various types of producers? What are they used for? (3)
- Q4. Why is wood called as a fuel of low calorific value? Explain the process of wood carbonization. (4)
- Q5. Define Proximate analysis, Flash Point, Cracking, Gasification, Coalification and Net calorific value. (3)
- Q6. Explain the application and the working of Jig washer and oil agglomeration processes with the help of a neat diagram. (3)
- Q7. With the help of a neat diagrams explain the working of a four stroke IC engine. (4)
- Q8. Why is it important to purify petroleum? Explain any 2 purification processes in detail. (3)
- Q9. Why is the Dean and Stark method used? What is the importance of octane number in petroleum industry? Explain (3)
- Q10. With the help of neat diagrams explain the working of reheating, blast and cupola furnaces. (5)
- Q11. Briefly explain about the premixed flame. Which kind of flame is economical and why? (3)
- Q12. Explain about Electrolysis of water in hydrogen production. (2)
- Q13. From the data given below, calculate the cold gas efficiency using a dry blast. Clinker analysis %dry: carbon 15.0 and ash 85.0. Heat of combustion- ($-\Delta$ Hc cal/mol): CO -67,636; H₂ -68,317; C₂H₄ -337,234 and CH₄ -212,798.

Coal analysis					Gas analysis, orsat, per cent
Per cent as charged	Per cent, dr		mmf		
Moisture	3.0	C	85.2	CO2	7.0
Ash	14.7	H	5.6	O2	0.7
Volatiles	35.7	N	2.8	CO	20.3
Fixed carbon	46.6	S	0.4	H2	12.5
Total	100.0	O	6.0	C2H4	0.5
		Total	100.0	CH4	3.0
Coal analysis				Gas analysis, orsat, per cent	
				N2	56.0
				Total	100 (

Dulong Formula- C_G=80.8C+344 (H-O/8)+22.2S (4)

Q14. Explain in detail about swirl-oil and rotary cup burners with the help of a neat diagrams. (4)

Q15. Why is it important to know the flame properties of a fuel during combustion process? (2)