(REGULAR Early) VII SEMESTER 2023-2024 Total > 16 Students

Question Paper

Exam Date & Time: 30-Nov-2023 (02:30 PM - 05:30 PM)

density.

MANIPAL ACADEMY OF HIGHER EDUCATION

VII SEMESTER B.TECH END SEMESTER EXAMINATIONS, NOV 2023

Natural Gas Engineering [CHE 4051]

Marks: 50

A

Answer all the questions.

Instructions to Candidates: Answer ALL questions Missing data may be suitably assumed

1)	Explain (a) gas density (b) gas formation volume factor (c) compressibility factor and (d) real gas pseudo pressure along with respective units.	(4)
A)		
B)	Prove that for the real gas $C_g = \frac{1}{p} - \frac{1}{z} \frac{\partial z}{\partial p}$	(3)

	C)	Analyze the Natural Gas Industry in context of India/USA.	(3)
2)		Compare how the operating gas flow rate is evaluated using the numerical and graphical method using	(5)
	A)	a) Nodal analysis at bottom-hole node (IPR and TPR)	
	\$	b) Nodal analysis at wellhead node (WPR and CPR)	

	Clearly mention the parameters of both the axis of each plot.	
B)	Explain the following flow regimes along with schematic (a) Churn flow (b) Slug flow (c) Annular flow (d) Mist flow.	(2)

C)	Explain the sonic and subsonic flow regime using the typical choke performance curve.	(3)
3)	Discuss the importance of the gas reservoir deliverability. Outline flow conditions in which performance relationship can be established along with relevant equations.	(4)

A)		
B)	A Big-Butte gas field produces, from a gas reservoir (5000 psia and 100° F), the gas mixture has the following composition. Consider $z = 0.9$)
-	Component C1 C2 C2 C4 C5 U C C2 U	

Molefraction	0.72 0.18 0.028	0.009	0.02	0.02	0.013	0.01				
Evaluate the	following gas pro	perties	(a) a	ppare	ent mol	ecular	weight (b)	specific	gravity (c	:)

C)	Outline and explain the process would be activated.	
0,	Outline and explain the process used to estimate water content in natural gas.	(3)

 The well is producing at a stabilized bottom-hole flowing pressure of 1600 	si. The wellbore radius	(5)
--	-------------------------	-----

	A	is 0.4 ft. The following data is available k = 0.06 d, h = 20 ft, τ = 700 0 R, P_{e} = 4400 psi, r_{e} = 1000 ft,	
	A)	s = 0, D = 0, μ = 0.0269 cp, \overline{Z} = 0.827, B_g = 0.0006712 rb/SCF	
		m(p) at reservoir pressure (P _e) is 1.072210926 psi ² /cp	
		m(p) at wellbore pressure (P _{wf}) is 196869120 ps ² /cp	
		Estimate the gas flow rate in Mscf/Day at P _{wf} = 1600 psia using the (a) pressure approach	
		(b) pressure-squared approach (c) m(p) approach	
	B)	Design a number of trays and water rate for trayed-type glycol contactor for a field installation to meet the following requirements:	(3)
H.		Gas flow rate: 20 MMscfd	
		Gas specific gravity: 0.60	
		Operating line pressure: 900 psig	
		Maximum working pressure of contactor: 1,440 psig	
		Gas inlet temperature: 100 °F	
		Outlet gas water content: 6 lb H ₂ O/MMscf	
		Design criteria: GWR = 3 gal TEG/lbm H ₂ O with 99.5% TEG	
		Please refer constants data sheet and graph sheets if required.	
	C)	Illustrate double barrel separator along with neat sketch.	(2)
5)		Explain gas sweetening absorption process plant using detailed flow diagram and list the solvents used for gas sweetening absorption process.	(4)
	A)		
	B)	Explain the role of API 610 code and plot the characteristics curve of the centrifugal pump.	(3)
	0	Construct the typical electab of a pig laurebox and pig receiver with labelling	/21

----End----