

DEPARTMENT OF CIVIL ENGINEERING

V SEMESTER B.TECH.

End Semester exam (Makeup)

SUBJECT: Analysis of Indeterminate Structures (CIE 3151)

DATE: XX-11-2023

TIME: XX

Q. No		Μ	CO	BL
1 a	A two hinged parabolic arch of span 30m and central rise 2.5m carries an udl of 30kN/m on the left half of the span and a point load of 135 kN at the crown. Find the reactions at the support and the bending moment at the crown.	5	CO1	3
1b	Develop stiffness matrix for bar element with two degree of freedom.	3	CO5	6
1c	List the assumptions made in fully plastic moment of a section.	2	CO4	1
2a	Analyse the continuous beam shown in figure by using three moment theorem method. The support <i>B</i> settles by 5mm below <i>A</i> and <i>C</i> . Assume <i>EI</i> to be constant for all members and $E = 200$ GPa, $I = 8 \times 10^6$ mm ⁴ . Draw BMD. 20 kNm 20 kNm 25 kN 4 m 2 m 1 m	5	CO2	4
2b	Derive the relation between flexibility and stiffness of a material considering the example of cantilever beam subjected to load P as shown in the figure.	3	CO5	6
2c	Define: (a) Distribution factor (b) Fixed end moments	2	CO3	1

3 a	Determine the structural stiffness matrix for the continuous beam ABC shown in figure by stiffness method.			
	$A \xrightarrow{30 \text{ kN/m}} 140 \text{ kN} \xrightarrow{60 \text{ kN}} 4 \text{ m} \xrightarrow{21 \text{ m}} 2 \text{ m} \xrightarrow{2 \text{ m}} 2 \text{ m}$	5	CO5	3
3b	Two point loads of 200 kN and 300 kN spaced 4 m apart cross a girder of span 20 m from left to right with the 200 kN leading. Draw the ILD for shear force and bending moment and find the values of maximum shear force and bending moment at a section 5m from the left-hand support.	3	CO6	4
3 c	Define stiffness coefficient k _{ij} .	2	CO5	1
4a	Determine the value of collapse load for the portal frame shown in the figure by beam, sway and combined mechanism. $W = \frac{2W}{M_{P}} \frac{5 \text{ m}}{3M_{P}} \frac{4 \text{ m}}{M_{P}} \frac{4 \text{ m}}{3M_{P}} \frac{1}{3M_{P}} \frac{1}{3M_$	5	CO4	3
4b	Determine the force matrix for the beam shown in the figure using stiffness method. $ \begin{array}{c} 100 \text{ KN} \\ 20 \text{ KN} \\ \hline 4m \\ 4m \\ 4m \\ 2m \\ 4m \\ 2m \\ 4m \\ 5m \\ 5m \\ 5m \\ 4m \\ 1.5m \\ 4m \\ 1.5m \\ 5m \\ $	3	CO5	3
4c	Two wheel loads 200 kN and 80 kN spaced at 2m apart move on the girder of span 16m. Determine the maximum bending moment that can occur at a section 6 m from the left end. Any wheel load can lead the other.	2	CO6	3
5a	Determine the structural displacement matrix for the frame shown in figure using displacement method.	5	CO5	3

	$\begin{array}{c} 40 \text{ kN /m} \\ 160 \text{ kN} \\ \hline \\ 41 \\ \hline \\ 41 \\ \hline \\ 41 \\ \hline \\ 8m \\ \hline \\ 77 \\ \hline \\ 8m \\ 8m \\ \hline \\ 77 \\ \hline \\ 8m \\ 8m$			
5b	A simply supported beam has a span of 20 m and subjected to an UDL of 20 kN/m, 6 m long travelling from left to right. Draw the ILD for shear force and bending moment at a section 8 m from the left end. Use these diagrams for calculating the maximum BM and SF at this section.	3	CO6	4
5c	Illustrate the reason for differentiating the frames as symmetric frames. What mechanisms are used to analyze it?	2	CO4	4