

VII SEMESTER B.TECH (CIVIL) END SEMESTER EXAMINATIONS NOVEMBER 2023

SUBJECT: CONSTRUCTION MATERIALS AND QUALITY

MANAGEMENT [CIE 4053]

Date of Exam: /11/2023 Time of Exam: – am/pm

Max. Marks: 50

Instructions to Candidates:

✤ Answer ALL the questions & missing data may be suitably assumed

Q. No		Marks	со	BL					
1A	Discuss Material	3	1	2					
	Develop system.								
	SI.								
	no 1	Coorso aggregato 20 mm	no 11	Standard sand-Grade II					
	2	Coarse aggregate 20 mm Coarse aggregate 12 mm	12	Standard sand-Grade II	-				
	3	Crushed sand	13	ISA 50×50×5 mm					
	4	Solid Block 400×200×100	14	ISA 50×50×6 mm					
		mm	15 16 17		4	1			
1B	5	Solid Block 400×200×150		ISA 65×65×6 mm			3		
		mm							
	6	Cement OPC 43 Grade		Reinforcement Steel Fe 500 TMT 8					
				mm					
	7	Cement OPC 53 Grade		Reinforcement Steel Fe 500 TMT 10					
				mm					
	8	White Cement	18	Reinforcement Steel Fe 500 TMT 12					
		D :	10	mm					
	9	River sand-coarse Standard sand-Grade I	19 20	PVC pipe 110 mm PVC pipe 160 mm					
	10								
1C	Discuss	3	2	2					
2A	Compar	2	2	2					

	workwee	ek and n data suita D PCC CC 1:	no other he ably. escription C (1:4:8) for :2:4 for foot	olidays. As	ssume	2 m ³ 5 m ³			ogether <mark>/ity</mark> y	•			
2B	F	PCC 1:4:8	8								3	2	3
	Materia	al Unit G	Quantity	CC 1:2							5	-	J
	CA 20	m ³	0.96	Materia	-	nit C		-					
	Sand	m ³	0.48	CA 20 mi		n ³	0.84						
	Cemen	t bags	3.60	Sand-coarse			0.42						
				Cement		ags	8.00						
						1 ³¹ C		brick mase					
				erial	Nos.	Quantity							
										0.30			
						Cement bags 1.50							
	material			using ABC t (×10³ ₹)				sumed per					
		M1		0.72									
	CM2							1.62					
	CM3		133	3.14				1.50					
~~		M3		3.14 08							_	•	
2C		M3 M4	0.					1.50			5	2	3
2C	CI		0. 1.	08				1.50 14.95			5	2	3
2C	CI CI CI	VI4 VI5 VI6	0. 1. 18	08 77				1.50 14.95 15.02			5	2	3
2C	CI CI CI CI	VI4 VI5 VI6 VI7	0. 1. 18 0. 0.	08 77 .33 01 08				1.5014.9515.0254.00105.00124.50			5	2	3
2C		M4 M5 M6 M7 M8	0. 1. 18 0. 0. 0.	08 77 .33 01 08 18				1.5014.9515.0254.00105.00124.50150.75			5	2	3
2C		V14 V15 V16 V17 V18 V19	0. 1. 18 0. 0. 0. 0. 0.	08 77 .33 01 08 18 14				1.50 14.95 15.02 54.00 105.00 124.50 150.75 154.92			5	2	3
2C	CI CI CI CI CI CI CI	M4 M5 M6 M7 M8 M9 M9	0. 1. 18 0. 0. 0. 0. 0. 0.	08 77 .33 01 08 18 14 12				1.50 14.95 15.02 54.00 105.00 124.50 150.75 154.92 194.25			5	2	3
2C 3A	CI CI CI CI CI CI CI CI The table forecasti	M4 M5 M6 M7 M8 M9 M9 M10 e shows ng tech	0. 1. 18 0. 0. 0. 0. 0. 0. the time set	08 77 .33 01 08 18 14 12 eries of cerr tween the	•		•	1.50 14.95 15.02 54.00 105.00 124.50 150.75 154.92 194.25 ag for two			5	2	3
	CI CI CI CI CI CI CI CI The table forecasti	M4 M5 M6 M7 M8 M9 M9 M10 e shows ng tech	0. 1. 18 0. 0. 0. 0. 0. 0. the time set	08 77 .33 01 08 18 14 12 eries of cerr tween the	mo	ving	avera	1.50 14.95 15.02 54.00 105.00 124.50 150.75 154.92 194.25 ag for two age and	the ex				
3А	CI CI CI CI CI CI CI CI CI CI The table forecasti smoothe Year-1 Year-2	VI4 VI5 VI6 VI7 VI8 VI9 VI9 VI10 e shows ng tech ening with 393 3 374 3	0. 1. 18 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	08 77 .33 01 08 18 14 12 eries of cerr tween the Alpha=0.2. 386 398 390 376	371 390	ving 35) 35	avera	1.50 14.95 15.02 54.00 105.00 124.50 150.75 154.92 194.25 ag for two age and 33 392	the ex 389 38	ponential	5	3	3
	CI CI CI CI CI CI CI CI CI CI CI Vear-1 Year-2 Discuss	M4 M5 M6 M7 M8 M9 M10 e shows ng tech ening with 393 3 374 3 various ti	0. 1. 18 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	08 77 .33 01 08 18 14 12 eries of cerr tween the Alpha=0.2. 386 398	371 390 390	ving 35) 35 .	4 38 6 30	1.50 14.95 15.02 54.00 105.00 124.50 150.75 154.92 194.25 ag for two age and 33 392 55 390	the ex 389 38 381 38	xponential 38 375 30 351			

VII SEMESTER B.TECH (CIVIL) END SEMESTER EXAMINATIONS NOVEMBER 2023

SUBJECT: CONSTRUCTION MATERIALS AND QUALITY

MANAGEMENT [CIE 4053]

3

Date of Exam: /11/2023 Time of Exam: – am/pm Max. Marks: 50

Develop a purchase strategy using the hindsight approach for the price data in the table below. Compute the total expenditure for the project plan period. The project requires 100 monthly units, and the maximum inventory capacity is 300. Compare the expenditure with the conservative approach and comment on the outcome.

ΛΛ

4A												4	3	3		
		Month	1	2	3	4	5	6	7	8	9	10				
		Price	318	315	340	318	313	320	342	384	318	318				
		Month	11	12	13	14	15	16	17	18	19	20				
		Price	318	325	325	349	321	317	319	331	337	357				
4B	Discuss the benefits of implementing quality function deployment (QFD).											2	5	2		
	Using the internal rate of returns method, determine which equipment is more profitable at an internal rate of 10%. The salvage value is expected at 10%.												more			
4C		Equipment Capital Investment (lakh ₹)			ent	GAR (lakh ₹)			ADED (lakh ₹)			Useful life (years)		Λ	3	3
+0		А	4.5			1.8, 1.9, 1.6, 1.5, 1.2		,	0.69, 0.6, 0.6, 0.51, 0.57			5		-	•	
		В		6.0		3.0, 3.2, 3.5, 3.9, 3.7		,	1.4, 1.5, 1.3, 1.5, 1.4			5				
5A	Discuss the appraisal and preventive costs in 'cost of quality.'									3	4	2				
5B	Discuss the PDCA cycle, citing its stages of implementation. Represent a typical												ypical	4	5	2
55	House of Quality.												-	3	۲	
5C	Illustrate the economics of 'quality of conformance.'											3	5	2		