

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

VII SEMESTER B.TECH (CIVIL ENGINEERING) END SEMESTER EXAMINATIONS

NOV/DEC-2023

SUBJECT: FINITE ELEMENT METHOD OF ANALYSIS [CIE 4065]

Date of Exam:

Time of Exam: 3 hours

Max. Marks: 50

Instructions to Candidates:

Answer ALL the questions & missing data may be suitably assumed
Compulsorily write DOF numbers and node numbers wherever required.

1A.	Discuss the guidelines for assuming displacement model in detail and explain geometric invariance	(5)	CO1
1B.	Analyze the bar shown in figure using FEM and evaluate the stresses in members. Take modulus of elasticity as 200GPa.	(5)	CO2
2A	Derive shape functions for a 2 noded bar element	(3)	CO2
2B	Derive transformation matrix for space truss element	(3)	CO3
2C	If a beam element of 4m length with one rotational degree of freedom for each node, has a nodal displacement vector of $[-0.003, +0.05]$ then, evaluate the midpoint displacement and slope.	(4)	CO4
3A	Analyze the truss shown in figure using FEM and find the displacements at the nodes. Take cross section area as 500mm ² and E as 200GPa.	(6)	CO3
3B	A space truss element has coordinates $(0,0,1)$ m and $(2,1,4)$ m respectively at node 1 and 2. If the displacement vector for the element in global direction is found to be [0, 0.001]m and [0.003, 0] m at node 1 and 2 respectively, then determine the displacement in local direction. Also evaluate stress and member force in the element. Comment on the nature of the member force. Take area of cross section as 400mm ² and modulus of elasticity as 200GPa.	(4)	CO3
4A.	Analyze the beam shown in figure using FEM. Determine support moments only. Take $EI= 3000 \text{ kNm}^2$.	(5)	CO4

	30kN 10kN/m 4m 2m 2m 2m		
4B	Determine nodal load vector for a beam element of length 6m loaded with a trapezoidal load of variation 10kN/m at one end and 20kN/m at the other end.	(3)	CO4
4C	Derive transformation matrix for a plane frame element.	(2)	CO4
5A	Determine nodal load vector for a CST element of coordinates { $(0,0)$, $(2,0)$, $(1,2)$ } m. Thickness of the element is $0.15m$. Density of material is assumed to be $78kN/m^3$. One of its sides is subjected to a uniform vertical surface load of $10N/mm^2$ in positive direction.	(3)	CO5
5B	Determine Jacobian for a quadrilateral element defined by cartesian nodal coordinates $\{(0,0), (3,0), (2,2), (0.5, 2)\}$ units at $(r,s)=(0, 0.5)$	(3)	CO5
5C	Derive shape functions for a quadrilateral element in natural coordinates	(4)	CO5