Reg. No.

VII SEMESTER B.TECH (CIVIL ENGINEERING) END SEMESTER EXAMINATIONS

NOV/DEC-2023

SUBJECT: FUNDAMENTALS OF FEM [CIE 4082]

Date of Exam: Time of Exam: 3 hours Max. Marks: 50

Instructions to Candidates:

- ❖ Answer ALL the questions & missing data may be suitably assumed
- ❖ Compulsorily write DOF numbers and node numbers wherever required.

1A.	Discuss principle of minimum potential energy	(5)	CO1
1B.	Apply Rayleigh Ritz method to derive an expression for maximum deflection in a simply supported beam subjected to UDL throughout.	(5)	CO2
2A	Derive shape function of a 2 noded bar element.	(4)	CO2
2B	Derive stiffness matrix of a beam element	(3)	CO3
3A	Analyze the truss shown in figure using FEM. 45 kN (2,6,4) (1,8,0) (x,y,z) are in metre	(5)	CO4
3B	Analyze the bar shown in figure below using FEM. Dimensions and C/s area are provided in figure. Take P= 50kN. P 2m (400mm²) 1m (250mm²) (450mm²)	(5)	CO3

			CO3
4A	Evaluate the integral $\int_{-1}^{1} x^2 + x + 3$ using Gaussian Quadrature. Compare it with classical solution.	(3)	003
4B	Analyze the beam shown in the figure below. 20kN/m 4m 6m	(7)	CO4
5A	Derive shape functions of a quadrilateral element	(4)	CO4
5B	Distinguish plane stress and plane strain conditions with relevant examples.	(2)	CO4
5C	Explain incremental method in nonlinear finite element analysis with a suitable example.	(4)	CO5

CIE 4065 Page 2 of 2