MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent unit of MAHE, Manipal)

DEPARTMENT OF CIVIL ENGINEERING

Subject (Name and Code): NDT of Concrete Structures (CIE 4080)

Semester: VII

Date of the Examination:

Month/Year: 2023

Name of the Faculty Member: GMG

Head of the Department: Dr PGS

SCHEME OF EVALUATION (END SEMESTER)

Q.No			Marks					
1A	VIT is perfo	ormed	l as a preliminai	ry investigation o	f concrete.			1+1=2
	It enables u	us to d	detect defects c	pen to the surfa	ce.			
	It is most e	у.						
1B	LT enables	inst any	1+1+1=3					
	loss of pre	ngs and						
	improving							
1C	Ir	ndex	Defect	causes	effect	Remedial		1.5+1+1.5+1=5
						measures		
	а	1	Plastic	Cracking that	Durability	Grouting		
			shrinkage	occurs in the	of the	_		
			crack	surface of	structure			
				fresh concrete				
				soon after it is				
				placed and				
				while it is still				
				plastic.				
				Improper mix				
				design,				
				presence of				
				silt and clay in				
				sand.				
	b)	Chalking	The formation	No major	Resurfacing		
				of loose	effect on	or re-		
				powder	structure	plastering		
				resulting from		if required		
				the				
			disintegration					
				of the surface				
				of concrete or				
				an applied				
				coating such				
				as				
				cementitious				
				coating.				

(A constituent unit of MAHE, Manipal)

		с	Efflorescence	Depos	sit of	Durability	Resurfacing		
				salts,	usually	of	or re-	, 	
				white	, formed	concrete	plastering		
				on a s	urface,	structure			
				the su	bstance				
				havin	3				
				emer	ged in				
				soluti	on from				
				withir	either				
				concr	ete or				
				maso	nry and				
				subse	quently				
				been					
				precip	itated				
				by a r	eaction,				
				such a	IS				
				carbo	nation				
				or					
				evapo	ration.				
		d	Mortar	a forn	n of	Durability	Resurfacing	5	
			flacking	scalin	g over	of	or re-		
				coarse	9	structure.	plastering		
				aggre	gate.				
2A	It is not	the true	e measure of cor	ncrete's	strength	/quality.			0.5*4=2
	It damag	ges the	concrete.						
	May dar	nage th	e reinforcement						
	Cracks c	aused a	ifter testing will	affect t	he durabi	lity of the stru	ucture.		
28		r	NDT of corrosi	on of	Merits/L	Demerits			Any 3, 1*3=3
		r	einforcement	IN					
				.1	Cimenalo				
			lan-cen potentia	11	Simple	and eco	nomical		
		-	adiography		Effoctive		ive and		
			aulography		Effective but expensive and				
			SDS		nazardous				
			C 10		Effective but expensive and				
					the resu	lt			
		1	Venner Probe		Simple a	ind cost effect	tive but		
					cannot	measure r	ate of		
					corrosio	n.			
2C	Definitio	on and e	explanation of te	st proc	edure				1+4=5

MANIPAL (A constituent unit of MAHE, Manipal)

3A	1. Chan the surface to be examined. This may be accomplished using detergents, organic solvents, descaling solutions, paint removers, vapor detreasing, sand or grit blasting, or ultrasonic cleaning methods. 2. 1. Image: Complex Solutions, paint removers, vapor detreasing, sand or grit blasting, or ultrasonic cleaning methods. 3. 2. Image: Complex Solutions, paint removers, vapor detreasing, sand or grit blasting, or ultrasonic cleaning methods. 3. 3. Image: Complex Solutions, paint removers, vapor detreasing, sand or grit blasting, or ultrasonic cleaning methods. 3. 3. Image: Complex Solutions, paint removers, vapor detreasing, sand or grit blasting, or ultrasonic cleaning methods. 3. 3. Image: Complex Solutions, paint removers, vapor detreasing, sand or grit blasting, or ultrasonic cleaning methods. 3. 3. Image: Complex Solutions, paint removers, vapor detreasing, sand or grit blasting, or ultrasonic cleaning methods. 3. 5. Image: Complex Solutions, printege, or other source of low-pressure dry air. 3. 3. 3.	<image/> <image/> <image/> <image/> <image/> <image/>	1+1(dia.) = 2
3B		Direct: most effective and accurate. Ensure the effective transmission of ultrasound. Widely preferred.Semi-direct:effectivenessaccuracyare lesser than the direct method.Preferred for inspection of columns, and large sections.	1.5+1.5 (dia.) = 3
3C	Computed tomography (CT) intinstead of a planar projection. by making a radiograph of a physic This cross-sectional image is not of and is highly sensitive to small images are easier to interpret that Basic Principles of Computed Tor The basic technique of computed	volves the generation of cross-sectional views The CT image is comparable to that obtained cally sectioned thin planar slab from an object. obscured by overlying and underlying structures I differences in relative density. Moreover, CT n radiographs. nography tomography is illustrated in Fig. A thin slice of the	3+2 (dia.) = 5

(A constituent unit of MAHE, Manipal)

testpiece is interrogated with a thin beam of radiation, which is attenuated as it passes through the testpiece. The fraction of the x-ray beam that is attenuated is directly related to the density and thickness of material through which the beam has traveled and to the composition of the material and the energy of the x-ray beam. Computed tomography utilizes this information, from many different angles, to determine cross-sectional configuration with the aid of a computerized reconstruction algorithm. This reconstruction algorithm quantitatively determines the point-by-point mapping of the relative radiation attenuation coefficients from the set of one-dimensional radiation measurements.

The CT scanning system contains a radiation source and radiation detector along with a precision manipulator to scan a cross-sectional slice from different angles. The x-ray detector is usually a linear array, that is, a series of individual x-ray sensors arranged in a line. The x-ray source is collimated to form a thin fan beam that is wide enough to expose all of the detector elements (Fig). The narrow beam thickness defines the thickness of the cross-sectional slice to be measured. The data acquisition system reads the signal from each individual detector, converts these measurements to numeric values, and transfers the data to a computer to be processed. To obtain the full set of transmission data required to produce the CT image, the object, source, or detector moves while a sequence of measurements is made. This motion may involve rotation of the test object relative to the source and the detector array (Fig.) or a combination of rotation and translation. The various types of scanning geometries are discussed in the section "CT System Design and Equipment" in this article.

	Fig. 2 Schematic of a computed tomography proc	cess ^(a) (b)	
4A	Potential difference levels (mv)	Chance of re-bar being corroded	2
	less than -500	visible evidence of corrosion	
	-350 to -500	95%	
	-200 to -350	50%	_
	More than -200	5%	—
			_

MANIPAL (A constituent unit of MAHE, Manipal)

4B	Longitud		linal pulse ocity	Quality of concrete		3	
			km/s.10 ³	ft/s			
		-	>4.5	>15	excellent		
			3.5-4.5	12-15	good		
			3.0-3.5	10-12	doubtful		
			2.0-3.0	7-10	poor		
			<2.0	<7	very poor		
4C							2+2+1=5
	Index	Defect		Sonogram – A scan	Description		
	а	Micro-p	porosity		'grass' on the CF with loss of the ba	RT trace and ck wall echo.	
	b	Spheric inclusio	al in		a small defect e with a small back-v	echo coupled wall echo	
	С	Plane o some a	defect at ngle		no echo		
5A	Measure provides may be indicatio	ements c a graph occurrin n of the 4 5 6	an be pres ical delinear or with magnitude	ented either with a ation of areas in the a cumulative frequ of affected area of t 	equipotential cont e member where co uency diagram whi he concrete member	cour map which prosion activity ch provides an er.	1+1 = 2
5B	Figure sl distinct	nows the parabola	GPR map s can be ea	collected along the asily identified at a c	circumference of th lepth of approxima	ne well. A set of tely 3.5 cm and	1.5+1.5 = 3

21.5 cm. It indicate regularly spaced (at a distance of about 20 cm) steel reinforcing meshes. Strong reflection form the underside of the well is visible at a depth of about 25 cm. Distance [m] Reinforcement 6 10 0 2 8 0 mesh Depth [m] (v = 10cm/ns) Time [ns] -10 -15 1.5

(A constituent unit of MAHE, Manipal)

5C	Defect	Type of	Description	Wave	5
	id	probe and	I I I	signature	
		probe		8	
		technique			
	1	Normal	Here transmission probe	Please refer	
	_	probe and	technique can also be	the	
		reflection	adopted. The defect is	description to	
		technique	compound, tensile crack	understand	
		teeninque	located close to the	the nature of	
			surface in the tension	wave	
			zone When the probe is	signatures	
			placed over the defect	signatures.	
			portion strong defect		
			echoes with amplitude		
			greater than backwall		
			echo are produced. The		
			defect echoes are found		
			close to the initial pulse		
			echo indicating the		
			defect is present near to		
			the surface		
	2	Normal	Here transmission probe	-Ditto -	
	2	probe and	technique can also be	Ditto	
		reflection	adopted. The defect is		
		technique	compression cracks		
		teeninque	The probe should be		
			placed opposite to the		
			defect. This is because		
			if the probe is kept		
			above the defect the		
			defect may not be		
			effectively detected due		
			to null zone. When the		
			probe is placed opposite		
			to the defect portion		
			strong defect echoes		
			with larger amplitude		
			then the backwall echo		
			is produced The defect		
			echoes will be situated		
			away from initial nulse		
			echo but close to		
			hackwall echo		
			indicating the location		
			of defect.		
			echo but close to backwall echo indicating the location		
			ot defect.		

(A constituent unit of MAHE, Manipal)

3 Norma The defect is diagonal -Ditto -
probe, crack (not necessarily
indirect shear crack). Here
transmission reflection probe
probe technique cannot be
technique used because when
used because, when
pulse only. when
indirect transmission is
used, wherein the
probes are held side by
side over the defect
portion in tension zone,
there can be defect echo
with amplitude slightly
more than backwall
echo
4 Not Honeycomb is not a
annlicable structural defect and it
is the type of surface
Is the type of surface
defect caused due the
poor workmansnip.
Honeycomb normally
can be recognised by
visual inspection. If
Ultrasound is used, the
sound wave will get
reflected in all
directions.
5 Normal Here transmission probe -Ditto -
probe and technique can also be
reflection adopted. The defect is
technique diagonal crack (not
necessarily shear crack)
When reflection
technique is used mild
defect achoes will be
derect echoes will be formed along to initial
formed close to initial
pulse echo which will
be followed by little or
no backwall echo.
6 Normal The defect is elliptical -Ditto -
probe and in nature. Therefore,
reflection when normal probe and
technique reflection technique
would be would be ineffective
ineffective. because the ultrasound
Norma waves will get reflected
probe direct in lateral direction upon

MANIPAL (A constituent unit of MAHE, Manipal)

	transmission probe technique can be used.	interacting with elliptical defect.			
7	Normal probe and reflection technique	Here transmission probe technique can also be adopted. The defect is not a tensile crack, compression crack and shear crack. When reflection probe technique is used, there would be initial pulse echo followed by defect echoes and little or no backwall echo. The defect echoes will be situated nearly mid, between initial and backwall echo representing the defect position.	-Ditto -		
8	Same as 2	Same as 2			