Reg. No.					

VII SEMESTER B.TECH END SEMESTER EXAMINATION, NOV/DEC 2023

SUBJECT: PE-III NATURAL LANGUAGE PROCESSING [CSE 4061] (-/-/2023)

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

Missing data may be suitably assumed.

Q	Questions		CO	AHEP	Blooms
No.				LO	level
1A.	"Natural language is extremely rich in form and structure, and very ambiguous". Justify your answer through suitable examples for ambiguities at various levels.	4M	CO1	1,2,5	5
1B.	Illustrate the followingi) Morphological parsingii) Stemmingiii) Lemmatizationiv) Tokenization	4M	CO1	1,2,5	2
1C.	Construct a Finite State Automata (FSA) for recognizing adjective morphology. The FSA must handle words like clear, real, big, red for the prefix 'un' and suffixes 'er', 'ly', 'est'.	2M	CO1	1,2,5	3
2A.	Write the algorithm for finding the minimum edit distance between two strings. Illustrate the working with an example.	4M	CO5	1, 2, 3, 4	3
2B.	Given a N-gram model with the count $C(W_1, W_2, W_n)$ having non-zero value, how would you use interpolated model and back-off model?. Give suitable equations. Which of these models use information from lower order models?	3M	CO5	1, 2, 3, 4	3
2C.	Given the bigram frequency Table 2C1 with a vocabulary size of V=1446, and unigram count in Table 2C2 having unigram counts, apply add-1 smoothing to obtain smoothed bigram probabilities table. Table 2C1	3M	CO5	1, 2, 3, 4	3

CSE 4061 Page 1 of 3

		•		4-	4	-1-1	£ J	lah					
	i	<u>i</u> 5	want 827	()	eat 9	0	food ()	lunch	spend 2				
	want	2	0	608		6	6	5	1				
	to	2	0	4	686	2	0	6	211				
	eat	0	0	2	0	16	2	42	0				
	chinese food	1 15	0	0 15	0	0	82 4	1 0	0				
	lunch	2	0	0	0	0	1	0	0				
	spend	1	0	1	0	0	0	0	0				
		_	-		-	-			-				
	Table 2C2	2											
	i v	vant	to	eat	chinese	food	lunch	spend	,				
		27	2417			1093		278					
3A.	Given the	trane	cition n	rohah	ilities an	d tha a	hcarvati	ion likali	hood	4M	CO4	1, 2, 4	3
JA.			-						e a flower.	41/1	CO4	1, 2, 4	3
	Which on		• ,			•			a jiower.				
	HMM mo			_				_	start-of-				
	sentence			iatrici	natically.	. THE SY	/IIIDUI \ .	3/ 13 tile	3tai t-01-				
	Flies/NN I	•		flowe	or/NINI								
	Flies/VB li	•	•		•								
	riies/ v b ii	-	•										
			DT N		VB		l a	like Fl	ies Flower				
	<s> 0.0</s>				0.18	ADJ		$\frac{0.02}{0.02}$	0.08				
	ADJ 0		0.008 0.)	DT	l	0 0	0				
	DT 0.5 NN 0.6		0 0. 0 0.		0.12 0.13	NN		0.003 0.1					
		0023 (0.13	VB	0	0.12 0.0	0.002				
2D	What are					ndanar	, oromn	or and r	hraga	43.4	CO4	1 2 4	2
3B.	structure g			Comj	pare depe	maency	granni	iai aiiu į	mase	4M	CO4	1, 2, 4	2
3C	•			s whi	ich resem	bles pr	epositio	on or an	adverb but	2M	CO2	1,2,3,4,	3
	is used in	comb	bination	with	a verb. E	Explain	with a s	suitable	example.			5	
4A.	Construct	the	parse t	rees	for the	sentenc	e "Johr	n called	Sue from	4M	CO3	1,2,3,4,	3
	Denver" u	ısing	CKY p	arsing	3 .							5	
	a =												
	$S \rightarrow NPV$												
	$VP \rightarrow VN$												
	$NP \rightarrow NP$												
	$VP \rightarrow VP$												
	$PP \rightarrow PN$												
	NP -> Joh												
	NP -> Sue												
	NP -> Dei												
	V -> calle	ed											
	V -> sue												
	P -> from		4 · C		1				C1. 1				
				gram	mar, hov	v do yo	ou conv	ert it to	Chomsky				
40	Normal Fo		` '	o C	ntord D.	. C		OCEC) 1	olove fin 1	03.4	CO2	1004	
4B.							,	,	below, find	3M	CO3	1,2,3,4,	3
	the parse	or me	semen	UC 1	ne mgnt	meruae	ts a mea	l1				5	

CSE 4061 Page 2 of 3

	S \rightarrow NP VP .80 Det \rightarrow The .40				
	$NP \rightarrow Det N$.30 $Det \rightarrow a$.40				
	$VP \rightarrow V NP$.20 N \rightarrow meal .01				
	$V \rightarrow \text{includes}$.05 $N \rightarrow \text{flight}$.02				
	Calculate the probability of the constructed parse tree.				
4C.	"Probabilistic parsing is to solve the problem of disambiguation".	3M	CO3	1,2,3,4,	5
	Justify your answer with suitable example.			5	
5A.	Given the sentence type handling yes-no questions, how do you	4M	CO2	1,2,3,4,	2
	modify the grammar to handle subject verb agreement?			5	
5B.	Given the bracketed notation, construct the equivalent parse tree	3M	CO2	1,2,3,4,	3
	[s [NP [PRO I]] [VP [V prefer] [NP [Det a] [Nom [N morning] [N flight]]]]]			5	
5C.	What are sentential complements for the verbs? Give example for	3M	CO5	1,2,3,4	2
	transitive verbs and intransitive verbs.				

aaaaaaaaaaaaa

CSE 4061 Page 3 of 3