Reg. No.

(A constituent unit of MAHE, Manipal)

VII SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) **END SEMESTER EXAMINATIONS, NOVEMBER-DECEMBER 2023**

INTRODUCTION TO ELECTRIC VEHICLES [ELE4084]

Fime: 3 Hour	rs Date: 09 DECEMBER 2023	Max. Marks: 50
 Ans 	swer ALL the questions. sing data may be suitably assumed.	
1A.	Discuss the need for electric vehicle penetration & its adoption challenges, and possible solutions with regard to the Indian Scenario.	
1B.	Derive the mathematical equation to determine the road-load power by considering different forces acting on the vehicle.	d 03
1C.	The Tesla Model S is traveling down a -8° slope at 120 km/h The mass of the vehicle is 2155 kg and vehicle parameters are A=177.2 N; B= 1.445 N/ms^{-1} ; C= $0.35 \frac{N}{m^2 s^{-2}}$ respectively Assuming calm conditions, how much regenerative power is available to brake the vehicle while maintaining a constant speed?	e S
2A.	Explain the different power flow control modes of a typical parallel hybrid system with the help of block diagrams.	03
2B.	Illustrate the layout of an electric vehicle using a schematidiagram and describe its main components.	с 03
2C.	 The Nissan Leaf electric vehicle has a battery energy of 90 kWh. The vehicle parameters are A=133.3 N, B=0.7094 N/ms⁻¹, C=0.491 N/(ms⁻¹)² respectively. Furthermore, the efficiency of the power train from the battery to the transmission is 85%. i. Estimate the range of the above electric vehicle at 120 km/h. ii. Determine the reduction in range for the above BEV if the vehicle has a continuous heating, ventilation, and air conditioning (HVAC) load of 6 kW. 	
ЗА.	Determine the beginning-of-life kilowatt-hour storage required in a BEV battery pack based on the following requirements: (years of operation, an average of 55 km of driving per day S_{dag} over the 365 days of the year, daily charging, and an average battery output energy per kilometer $E_{km} = 180 \text{ Wh/km}$. Assume battery pack cycle lifetime index L = 3 and number of	

charge\discharge cycles for 100% depth of discharge $N_{\rm 100\%}{=}1000$. Assume two parallel battery strings with 96 Li-ion cells per string, with a total number of cells $N_{\it cell}{=}192$, and a nominal voltage of 3.75 V per cell. Assume that the capacity of the battery pack will reduces to 80% at the end of life.

i. Determine the ampere-hours per cell.

ii. What are the vehicle ranges at beginning of life (BOL) and end of life (EOL)?

- **3B.** Explain the basic principle of supercapacitor-based energy storage system in hybrid electric vehicles.
- **3C.** Explain the working principle of a fuel cell with its dynamic characteristics.
- **4A.** A fully loaded fuel cell-based tractor has the following parameters: mass m = 36,280 kg, drag coefficient $C_D = 0.7$, vehicle cross-section A=10m², and coefficient of rolling resistance $C_R = 0.008$. The nominal efficiency of the powertrain and transmission $\eta_{pt} = 85\%$, and the auxiliary load is 2 kW. Let the density of air $\rho_{air} = 1.2 kg/m^3$. The overall mass of the fuel cell system (including the fuel cell, balance of plant, storage tanks, and mechanical bracketing) is 400 kg plus 80 kg per 5 kg of stored hydrogen.
 - i. Determine the Miles per gallon equivalent (mpge), and the overall mass of the fuel cell system if the vehicle is to travel at a constant speed of 64 km/h for two work shifts of 8 h total, or 512 km. The fuel cell plant efficiency is 50% for this operating condition.
 - ii. Determine the mass of the battery which would be required if the specific energy is 0.15 kWh/kg.
- 4B. Describe the characteristics of a PMSM motor and explain the control technique employed to regulate the speed of PMSM.03
- **4C.** With the help of a neat diagram explain the four-quadrant chopper-based speed control of DC motors.
- 5A. Discuss the various methods used for charging batteries, providing a comprehensive comparison between each method.
 03
- 5B. Explain the role of the power electronic converter employed in battery electric vehicles to capture the energy generated during regenerative braking of the vehicle with a neat circuit diagram.
 04
- 5C. Discuss the implementation issues of energy management strategies for an HEV.O3

03

03

04

03