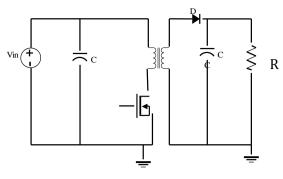
Reg. No.

(A constituent unit of MAHE, Manipal)

VII SEMESTER B. TECH (ELECTRICAL & ELECTRONICS ENGINEERING) END SEMESTER EXAMINATIONS, DECEMBER 2023


MODERN POWER CONVERTER [ELE 4085]

REVISED CREDIT SYSTEM

REVISED GREDIT STSTEM							
Time: 3 Hou	Irs Date: 05 DECEMBER 023	Max. Marks: 50					
	to Candidates:						
	swer ALL the questions.						
↔ Mi	ssing data may be suitably assumed.						
1A.	Make a technical comparison between AT and ATX Power supply.	(02)					
1B.	State and prove ampere-second balance and volt-second balance. Also establish the relationship between input voltage and output voltage for Boost-type DC-DC converters by applying ampere-second balance to the	Dr					
	capacitor.	(04)					
1C.	Design a suitable converter to charge a battery voltage of 400V. The input to the converter varies from 380V to 420V. The operating frequency 20kHz and the converter is supplying a load of 1.6kW. Assume all an ideal assume to the converter of t	is					
	ideal components.	(04)					
2A.	You are assigned to design a power electronic LED driver suitable for Honda City car LED Bumper Light of 100W with a voltage rating of 12 power from the car battery supply of 48V. (i) Select Forward converte type dc-dc converter suited for this driver. Find maximum and minimum values of inductor currents(ii) Design the number of turns and capacitor for this converter. Assume the output voltage ripple is 0.5%, inductor Lx	V er m rs					
2B.	0.5mH, the duty ratio is 0.4, and the switching frequency is 35 kHz. Classify the different soft switching techniques that can be developed to	(04) to					
20.	enhance the efficiency of the converters.	(03)					
2C.	Analyze the load current, diode current, and inductor voltage of a current fed DC-DC converter. Derive an expression to estimate the output						
	voltage.	(03)					
3A.	Design a fly-back converter and its component selection with the step by-step procedure. Converter Operating with continuous conduction mode as shown in Fig.Q.no.3A.						

Vin	40 to
	90V
Vout	24V
Io	1 AMP

(04)

D	0.5
F_{sw}	150kHz
KRF	1
η	80%

Fig.Q.no. 3A

3B. Describe the working of series load resonant converter with waveform of resonant inductor current and capacitor voltage operating under leading power factor.

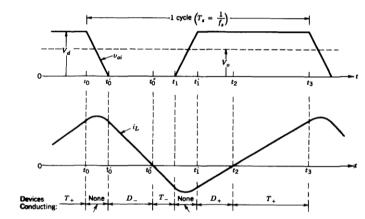


Fig.no.3C.

With the reference of Fig.Q.no 3C. identify suitable converter Topology in switched mode power converter. (02)

4A. Analyze the waveform of resonant inductor current and capacitor voltage of a buck converter. The switch is required to conduct a peak Voltage that is higher than the source voltage Vs by an amount I_0Z_0 and explain its circuit properties. (04)

4B.

3C.

A parallel loaded resonant converter is having the source voltage of 150V, resonant inductor and capacitor are 18μ H $Cr=0.82 \mu$ F, load resistance is $RL = 10\Omega$, and switching frequency is fs = 120 kHz. Determine the output voltage of the converter. Assume the output filter components Lo and Co produce a ripple-free output current and voltage. Justify the output voltage of the converter. Refer Fig.Q.no 4B.

(04)

(04)

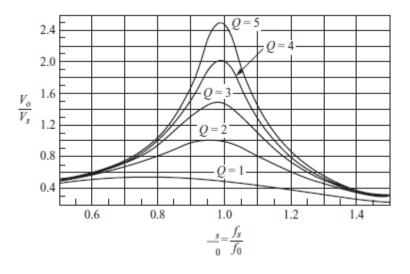


Fig.Q.no.4B.

- **4C.** Explain steady state characteristics and its important properties of a parallel-loaded resonant dc-dc converter (02)
- 5A. Explain the parameters that need to be calculated for the inductor design in switched mode power supply. (03)
- **5B.** Develop a small signal AC model of the buck-boost converter with stepby-step procedure. Assuming ideal components and continuous conduction mode.
- 5C. Design a high-frequency transformer for the full bridge dc-dc converter. The source voltage is 48V the output voltage is 24V, the operating frequency of the converter is 20KHz, the load has 8Ω resistance. Assume the output voltage ripple is 1% and input voltage fluctuation is 10%, refer to the core selector chart in Table 1. (03)

Core	Mean Length(mm ²)	Mean Magnetic length lm(mm ²)	Core cross- section (Ac*100mm ²)	Window area (Aw*100mm ²)	Area Product (Ap*10 ^{A4} mm ²)	Effective relative permeability $\mu r \pm 25\%$	$\begin{array}{c} A_L \\ {}^{nh/TURNS}^2 \\ \pm^{25\%} \end{array}$
P18/11	35.6	26	0.43	0.266	0.114	1480	3122
P 26/16	52	37.5	0.94	0.53	0.498	1670	5247
P30/19	60	45.2	1.36	0.747	1.016	1760	6703
P36/22	73	53.2	2.01	1.01	2.010	2030	9500
P42/29	86	68.6	2.64	1.81	4.778	2120	10250
P66/56	130	123	7.15	5.18	37.03		

Table 1: Physical Electrical and Magnetic characteristics of ferrite core

(04)