ECE 4073

Exam Date & Time: 07-Dec-2023 (02:30 PM - 05:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

VII SEMESTER B.TECH END SEMESTER EXAMINATIONS, NOV DEC 2023

Error Control Coding [ECE 4073]

Marks: 50 **Duration: 180 mins.** Α Answer all the questions. Instructions to Candidates: Answer ALL questions Missing data may be suitably assumed 1) Determine the conjugates and minimal polynomial of α^7 over GF(2⁴) with primitive polynomial $p(x)=1+x^3+x^4$ (4)A) B) Determine sum of α^3 and α^5 in GF(3²) with primitive polynomial p(x)=x²+x+2. (3) C) Implement circuit to perform multiplication of two field element in $GF(2^4)$ using $p(x)=1+x^3+x^4$. (3) 2) Construct parity equations to encode 6 bit message using the non-systematic Hamming code. Determine the code word for the message 110011. Correct the received vector (1010110101) for 1 bit (3) error if any. A) B) The parity check equations for a systematic (n,k) linear block code are : (3) $V_0 = u_0 + u_1 + u_3$; $V_1 = u_0 + u_2 + u_3$; $V_2 = u_0 + u_1 + u_2$; $V_3 = u_1 + u_2 + u_3$ where u_i are message bits and V_i are parity check bits for i=1 to 3 Determine

ECE 4073

- i. How many error patterns it can correct?
- ii. How many error patterns are detected?
- iii. Determine the syndrome for the received vector $r(x)=1+x^3+x^6$ and detect for errors
- iv. If error is detected, Estimate the error pattern & the message vector.
- C) An (15,11) cyclic code is defined by polynomial $p(x)=1+x^3+x^4$. Find
 - i. Find the cyclic code for the message stream (10100100101)
 - ii. Determine the syndrome for the received code is (000010010010000). Is the received code (4) correctable, if yes Find the corrected message code.
 - iii. Devise a Meggitt decoder for this cyclic code and explain

3) Design the shortened decoder (27, 22) using $p(x)=1+x^2+x^5$. Show the computation of necessary design equations and implementation the decoder. (3)

- A)
- B) Implement the syndrome circuit for a double error correcting BCH decoder over $GF(2^4)$ using $p(x)=1+x^3+x^4$. Find the syndromes for received polynomial $r(x)=x^2+x^9$. (5)
- C) Design and show the implementation of Chien's searching circuit for the triple error correcting BCH code over $GF(2^4)$ using $p(x)=1+x^3+x^4$, if the error location polynomial is $\sigma(x) = 1+\alpha^5x+\alpha^{12}x^3$ (2)
- 4) Using a double error correcting RS code over $GF(2^4)$ using $p(x) = 1+x+x^4$, Determine the syndrome for $r(x) = \alpha^{12}x^3$. (2)
 - A)
 - B) Using a triple error correcting RS coding over $GF(2^4)$, $p(x) = 1+x+x^4$, the syndromes computed for a received polynomial are $\{\alpha^{12}, 1, \alpha^{14}, \alpha^{10}, 0, \alpha^{12}\}$. Determine the error location polynomial. (3)

(5)

ECE 4073

Determine the error location numbers, if the error location polynomial is $\sigma(x) = 1 + \alpha^5 x + \alpha^6 x^2 + \alpha^4 x^3$ for syndrome polynomial is S={ $\alpha^5, \alpha^7, \alpha^{10}, \alpha^5, \alpha^7, \alpha^6$ }, for a triple error correcting RS coding over GF(2⁴), p(x) = 1+x+x⁴,

5) The convolution Encoder is defined by generating polynomials $(1+x, 1+x^2)$. Draw the state diagram and Trellis diagram for 3 clock cycles. (3)

A)

- B) For the convolution Encoder defined by $(1+x, 1+x^2)$, Determine the code word for the message (1011101) and verify the results using convolution operation. (3)
- C) Decode the received bit stream $\{11\ 11\ 00\ 10\ 11\ 00\ 00\}$ using the Viterbi decoding for convolutional encoder defined by $(1+x,\ 1+x^2)$. (4)

-----End-----