MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

SEVENTH SEMESTER BTECH. (E & C) DEGREE END SEMESTER EXAMINATION NOV/DEC 2023

SUBJECT: MOTION AND GEOMETRY BASED METHODS IN COMPUTER VISION (ECE 4078)

TIME: 3 HOURS

MAX. MARKS: 50

Instructions to candidates

- Answer ALL questions.
- Missing data may be suitably assumed.

Q. No.	Questions						C *	A *	B *
1A.	Compute the two-level 2D Haar wavelet transform of the given image. $I = \begin{bmatrix} 10 & 21 & 12 & 23 \\ 20 & 10 & 21 & 12 \\ 31 & 22 & 13 & 20 \\ 22 & 13 & 21 & 10 \end{bmatrix}$						2	1,2	3
1B.	Compare the affine weak perspective projection model with pinhole camera projection model, with the help of neat diagrams.						6	2,3	4
1C.	Given a point in the camera coordinate system $(Xc,Yc,Zc) = (1,1,1)$, and given the focal length =1, pixel size along both coordinates =0.5 and principle point at (2,2), compute the intrinsic camera calibration matrix and the corresponding image point coordinates.					2	1	1	3
	Consider the dataset given below. Use Principal Component Analysis to reduce the dimensions of features to 1. Plot the principal component and the transformed features in the original feature space.								
2A.	Feature	Data 1	Data 2	Data 3	Data 4	5	3	2,3	3
	X	4	8	13	7				
	Y	11	4	5	14				
2B.	Determine the pixel intensities in the transformed image after upscaling the given image, <i>I</i> , by a factor of 2. Use Bilinear interpolation. $I = \begin{bmatrix} 20 & 40 \\ 40 & 20 \end{bmatrix}$					3	3	2,3	3
2C.	Compute the short run emphasis and long run emphasis of the Run Length matrix used to detect the vertical features in the given image. $I = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 3 & 1 & 0 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \end{bmatrix}$					2	2	1,2	3

3A.	Describe the procedure of KLT algorithm for object tracking. Evaluate its limitations, and suggest a solution with proper reasoning.	5	4	1,2	4
3B.	Discuss the Horn and Schunk algorithm for object tracking. At time $t_0=0$, a point object is located at real world coordinates (20,40,10), and is moving with constant speed =(-4,-8,-2), towards the observer. Assuming unit focal distance of the optical flow system, a.Determine the location of object at image coordinates at time t_0 . b.Determine the image coordinates of the Focus of Expansion.	3	4	3	3
3C.	Determine the vector cosine of the line passing through the points $(2,4,6)$ and $(3,1,-5)$.		5	3	3
4A.	Compare and contrast the local and global binocular fusion methods for point- pair correspondence estimation. Explain the need for image rectification.	5	5	2,3	4
4B.	Explain in detail the stratified method for 2D metric reconstruction.	3	5	1	2
4C.	Determine the vector equation of plane passing through the points $(1,1,-1)$, $(6,4,-5)$, and $(-4,-2,3)$.	2	5	3	3
5A.	Discuss the Affine structure from motion using affine epipolar geometry, with the help of a neat diagram.	5	6	1	2
5B.	An affine matrix represents a rotation of 45 degrees about the origin and a horizontal shear by a factor of 0.25. Determine the affine matrix and calculate the new point coordinates for a given object with vertices at $(0,0)$, $(4,0)$ and $(0,4)$. Plot the position of the object, before and after the transformation.	3	1	1	3
5C.	Given two cameras, compute the minimum number of point correspondences required to reconstruct Perspective structure from motion.	2	6	3	3

M*--Marks, C*--CLO, A*--AHEP LO, B* Blooms Taxonomy Level