Question Paper

Exam Date & Time: 10-Jan-2024 (02:30 PM - 05:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

BTech VII Semester - Makeup Examination - Jan 2024

Pattern Recognition [ICT 4053]

Marks: 50 Duration: 180 mins.

Descriptive

Answer all the questions.

- * Answer all questions.
- * Assume the missing data suitably.
- * Write neatly and legibly.
- * Give suitable examples wherever necessary.
- Give a neat block diagram depicting the design cycle of a pattern recognition system, and explain the following terms in context of design cycle:
 - i) Data collection
 - ii) Feature choice
 - iii) Model choice
 - iv) Training
 - v) Evaluation and
 - vi) Computational complexity.
- 2) The minimum-error rate classification can be achieved by the use of discriminant function (3)

$$g_i(\mathbf{x}) = \ln p(\mathbf{x}|\omega_i) + \ln P(\omega_i).$$

Rewrite the given discriminant function considering the density $p(\mathbf{x}|\omega_i)$ as a multivariate normal, that is $p(\mathbf{x}|\omega_i) \sim \mathcal{N}(\boldsymbol{\mu}_i, \boldsymbol{\Sigma})$ and obtain the linear discriminant function for $\boldsymbol{\Sigma}_i = \sigma^2 I$.

Consider the three-dimensional normal distribution $p(\mathbf{x}|\omega) \sim \mathcal{N}(\mu, \Sigma)$, where

$$\mu = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \text{ and } \Sigma = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 2 \\ 0 & 2 & 5 \end{bmatrix}.$$

Find the probability density at the point $\mathbf{x}_0 = [0.5 \ 2 \ 0.8]^T$.

Let x have an exponential density

 $p(x|\theta) = \begin{cases} \theta \exp(-\theta x) & x \ge 0\\ 0 & \text{otherwise} \end{cases}.$

i) Plot n(x|A) versus x for A-1

(5)

(2)

- 1) I lot p(x|v) versus x for v=1.
- ii) Plot $p(x|\theta)$ versus θ , $(0 \le \theta \le 5)$, for x = 2.
- iii) Suppose that n samples x_1, \ldots, x_n are drawn independently according to $p(x|\theta)$. Show that the maximum-likelihood estimate for θ is given by

$$\hat{\theta} = \frac{1}{\frac{1}{n} \sum_{k=1}^{n} x_k}.$$

The purpose of this problem is to derive the Bayesian classifier for the d dimensional multivariate Bernoulli case. Work with each class separately, interpreting $P(\mathbf{x}|\mathcal{D})$ to mean $P(\mathbf{x}|\mathcal{D}_i, \omega_i)$. Let the conditional probability for a given category be given by

$$P(\mathbf{x}|\boldsymbol{\theta}) = \prod_{i=1}^{d} \theta_i^{x_i} (1 - \theta_i)^{1 - x_i},$$

and let $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ be a set of n samples independently drawn according to this probability density. Assuming a uniform a priori distribution for θ and using the identity

$$\int_0^1 \theta^m (1-\theta)^n d\theta = \frac{m! n!}{(m+n+1)!},$$

show that

$$p(\theta|\mathcal{D}) = \prod_{i=1}^{d} \frac{(n+1)!}{s_i!(n-s_i)!} \theta_i^{s_i} (1-\theta_i)^{n-s_i}.$$

Note that $P(\mathcal{D}/\theta) = \prod_{i=1}^d \theta_i^{s_i} (1-\theta_i)^{n-s_i}$, and $\mathbf{s} = (s_1, \dots, s_d)^T$ is the sum of n samples.

- 6) When do maximum-likelihood and Bayes methods differ? (2)
- 7) Describe various types of hierarchical clustering techniques. (5)

8)

Consider the criterion function

$$J(\mathbf{w}) = \frac{(\mu_1 - \mu_2)}{\sigma_1^2 + \sigma_2^2} = \frac{\mathbf{w}^T S_B \mathbf{w}}{\mathbf{w}^T S_\mathbf{w} \mathbf{w}}$$

which is maximized by $\mathbf{w} = (\Sigma_1 + \Sigma_2)^{-1}(\mu_1 - \mu_2)$. Determine the maximum value of $J(\mathbf{w})$ for the data points given in Table.Q3B.

Table: Q3B

и	1	ω_2		
x_1	x_2	x_1	x_2	
0	1		G	

4	4 0		U	
3	5	5	4	
3	4	6	5	
3	3	6	6	

9) Write the pseudocode for PNN training. (2)

10) Consider a HMM, $\theta = (A, B)$, where A, and B are the transition and emission probability matrices which are given by

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0.2 & 0.3 & 0.1 & 0.4 \\ 0.2 & 0.5 & 0.2 & 0.1 \\ 0.8 & 0.1 & 0.0 & 0.1 \end{pmatrix}$$

and

$$B = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0.3 & 0.4 & 0.1 & 0.2 \\ 0 & 0.1 & 0.1 & 0.7 & 0.1 \\ 0 & 0.5 & 0.2 & 0.1 & 0.2 \end{pmatrix}.$$

Assume that the initial state at t=0 be ω_1 . What is the probability that the model generates the sequence $\mathbf{V}^7 = \{v_2, v_1, v_3, v_2, v_2, v_4, v_0\}$? Assume that the matrix indexes begin at 0. [Note: v_0 denotes the visible symbol emitted by the accepting/final state]

11) (3)

Consider the sum-of-error criterion function

$$J_s = \|\mathbf{Y}\mathbf{a} - \mathbf{b}\|^2 = \sum_{i=1}^n (\mathbf{a}^T \mathbf{y}_i - b_i)^2.$$

Let $b_i = 1 \ \forall i$ and consider the following training samples:

$$\omega_1 : \{(1,5), (2,9), (-5,-3)\}$$

 $\omega_2 : \{(2,-3), (-1,-4), (0,2)\}.$

Calculate the Hessian matrix for this problem.

State the limited horizon assumption for Markov model. 12)

(2)

13) Consider the set of two-dimensional patterns given in Table.Q5A. Use agglomerative

Table: Q5A

Sample x_1 x_2 Sample x_1 x_2

1	1	1	8	5	1.5
2	1	2	9	4.5	2
3	2	1	10	4	4
4	2	1.5	11	4.5	4
5	3	2	12	4.5	5
6	4	1.5	13	4	5
7	4	2	14	5	5

(complete-link) clustering to obtain four clusters. Draw the resulting dendrogram. Use the city-block distance between \mathbf{x}_i , and \mathbf{x}_j , which is defined as $d(\mathbf{x}_i, \mathbf{x}_j) = \sum_{k=1}^{d} |\mathbf{x}_{ik} - \mathbf{x}_{jk}|$, where d is the dimensionality of samples.

(14) Consider the given vectors:

$$\mathbf{x}_1 = [5, \ 3, \ 2, \ 4]^T, \ \mathbf{x}_2 = [4, \ 1, \ 2, \ 3]^T, \ \mathbf{x}_3 = [2, \ 4, \ 3, \ 5]^T.$$

Show that for all the pair of vectors formed using x_1, x_2 and x_3 , the following identity holds:

$$d_2(\mathbf{x}_i, \mathbf{x}_j) < d_1(\mathbf{x}_i, \mathbf{x}_j) \text{ for } i, j = 1, 2, 3(i \neq j),$$

where d_2 and d_1 are the Euclidean and Manhattan distance respectively. [Hint: $d_1(\mathbf{x}_i, \mathbf{x}_j) = \sum_{k=1}^{d} |\mathbf{x}_{ik} - \mathbf{x}_{jk}|$].

15)

Let $\mathbf{x}_1 = \binom{5}{6}$, $\mathbf{x}_2 = \binom{2}{5}$, $\mathbf{x}_3 = \binom{1}{2}$, and $\mathbf{x}_4 = \binom{6}{1}$. Find the sum-of-square error J_e criterion for the partition $\mathcal{D}_1 = \{\mathbf{x}_1, \mathbf{x}_2\}$, $\mathcal{D}_2 = \{\mathbf{x}_3, \mathbf{x}_4\}$. The sum-of-square criterion is defined as

$$J_e = tr[\mathbf{S}_w] = \sum_{i=1}^c tr[\mathbf{S}_i] = \sum_{i=1}^c \sum_{\mathbf{x} \in \mathcal{D}_i} \|\mathbf{x} - \mathbf{m}_i\|^2.$$

----End----

(3)